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SUM ARlO 

En este articulo presentamos un analisis genel"al y elem ental para espectroscopia de pllisos cortos u~ando instrumen~os 
por interferencia de dos y mt'tltiples haces. Las modificaciones de las franjas de interferencia son debldas a ~as prople­
dades del instrumento, al tamailO finito del pulso y a las frecllencias que componen al pulso (espectro). A~l la deter­
minacion del espectro de un pulso requiere el conocimiento de la forma del pulso y las propiedades del mstrumento 
como replicador del pulsu. 

ABSTRACT 

\Ve present a generalized but an elementary analysis for short pulse spectroscopy using two-beam and multiple­
beam interference instruments. The yarious modulations of the interference fringes are due to the properties of the 
instrument, the finite size of the pulse and the carrier frequencies (spectrum) of the pulse. So the determination of 
t he spectrum of a pulse requires a knowledge of the pulse sha pe and the properties of the instrument as a pn Ise replica tor. 

I. Introduction 

We define spectroscopy of electromagnetic radiations as the objective to determine the high 
frequency at which the incident radiation oscillates. In general, the radiation may go through various 
modulations like amplitude, phase and frequency. Here we shall consider only the amplitude modula­
tion of the radiation and we will represent our signal as V (t) exp (2Jtivt), where V (t) (a real func­
tion) is the amplitude envelope of the radiation that is oscillating at a frequency v. Our objective is 
to find out v. In the low frequency radio range, this objective can be simply achieved by using a 
sharply tuned oscillator or a simple galvanometer for extremely low frequency oscillations; of course, 
the envelope function should be slowly varying compared to the frequency of oscillation. But for ex­
tremely high frequency electromagnetic radiation, we do not as yet have any amplitude detectors to 
take readings; we have only square law detectors. We cannot measure the frequency of oscillation 
directly. The solution is to use the phenomenon of interference to our advantage. If the incident 
signal is superposed with a reference signal (or a part of itself) containing known parameters, then 
a square law detector could indirectly give the frequency of the signal through the time varying beat 
signals due to interference. This is the essential principle behind heterodyne (homodyne) spectrosco­
py (Cummins and Swinney 1970). The alternative is the older classical method of replicating the very 
incident signal by amplitude division (Michelson, Fabry-Perot, Lummer-Gehrcke, etc.) or by wave­
front division (various gratings), and then superposing them with a time (phase) delay. The square 
modulus of the superposed signals while detected by a slow detector like a photographic plate can give 
the frequency information (Born and Wolf 1975). In this paper we shall consider such interferometric 
techniques of spectroscopy for pulsed light. The other known alternative method of classical spectros­
copy, that we will not discuss here, is to use refr active dispersion (prism or its equivalent) to spatially 
separate energies due to different frequencies. But the resolving power of this method is rather li­
mited due to the small size of prisms, altho~lgh some new possibilities with gradient index fibres 
have been recently investigated (Cervantes 1976). 

II. Two-Beam Spectroscopy 

Suppose we have an instrument (like Michelson interferometer) that replicates two identical 
signals from a single incident one with a time delay of 'to The time impulse response of the instru­
ment is, 

H (t) = () (t) + () (t + 't). (1) 

Then an incident signal V (t) exp (2Jtivot) will proJuce a time response, 

B (t) == H (t) EB V (t) exp (2Jtivot) 

== V (t) exp 2Jtivot + V (t + 't) exp 2Jtivo (t + 't) 
(2) 

It is tacitly assumed that the geometry of the ins trument is such that it attempts to superpose the re­
plicated signals linearly (otherwise the above mathematical expression of linear superposition would 
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not be valid). Any lack of superposition will then be due to the finite size of the incident pulse. vVe. 
could have written the last step of Eq. 2 directly; physically it is more appealing than first using 
Eq. I and then doing the convolution of the first step of Eq. 2. Further, since our interest is to look 
at the time evolving interference pattern, we shall analyze Eq. 2 directly rather than first taking its 
Fourier transform and then doing the inverse transform as is customarily done. 

Now, suppose we have an incident pulse V (t) of width Bt that is much shorter than the time 
delay 1". Then we would not have any superposi tion of the replicated pulse in Eq. 2 and the detected 
irradiance will be, 

IB (t; ~t ~ 1")12 == V2 (t) + V2 (t + 1"), (3) 

which contains no interference term and hence there is no possibility of obtaining spectroscopic in­
formation. The other extreme case is if V (t) is unity and extends over all time. The irradiance pattern 
now depends only on the path delay (equivalent to a phase delay), 

IB(~t == 00)\2== 00\2 == \exp (2Jtivot) [1 + exp (2Jtivo1:)]12 

== 2 (1 + cos 2Jtivo1:). 
(4) 

Now a straightforward counting of the fringes while varying 1" will reveal the frequency of the ra­
diation, 

Vo (1:1 - 1"2) == m (no. of fringes). (5) 

But if there are many non-coherent but continuous frequencies simultaneously present with a norma­
lized intensity distribution F (v), 

00 

S F (v) dv 1, (6) 
o 

then the resultant irradiance IS given by Eq. 4 but integrated over all frequencies 

00 

IB (v; ~t == 00 )1 2 == I (v) == 1 + f F (v) cos 2Jtv't dv, (7) 
o 

where we have absorbed the constant factor 2 in the left-hand side. Identifying the mathematical struc­
ture of this equation with the Fourier theorem, we can state that our interferogram is the Fourier 
transform of the spectral density function superposed over a constant background. The origin of this 
Fourier transform-like structure is due to the following facts. We sum over the intensities due to the 
frequencies F (v); the effect of mutual interference between different frequencies are negligible. Second, 
the interference fringes have the cosine form because they are due to the superposition of two ampli­
tudes of the same frequency and further, the cosine form is also due to the fact that the oscillation 
of the radiation is considered to be sinusoidal. Now, the origin of the Fourier transform spectroscopy 
is immediately evident from Eq. 7. Considering only the oscillatory part, 

108 (v) 

00 

S F (v) cos 2Jtv1: dv, 
o 

(8) 

one can easily find out F (v), with the help of a computer, by doing a cosine Fourier transform of 
the oscillatory part of the recorded interferogram (Klein 1970, Born and Wolf 1975). In the most gen­
eral case of F (v), Eq. 7 can be written as (Klein 1970), 

I (v) == 1 + U (1:) cos [2Jtvo't + <I> (1')], (9) 

where U (1') and <I> (1:) are slowly varying functions for a narrow bandwidth F (v) compared to the high 
frequency cosine fringes; Vo is the central frequency of F (v). For the case of a symmetric F (v), <I> (1:) 
is zero and a simple fringe counting will give us the central frequency Yo. But such a conclusion will 
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be difficult for an asymmetric spectrum because of the lack of knowledge about 4> (r). In any case, 
the visibility of the fringes (after Michelson) of Eq. 9 IS, 

V= 
lmax - lmin 

111ULx + lmin 
= U(-t) (10) 

The Equations 4-10 have been derived on the assumption that the radiation consists of con~inuous os­
cillations. Non-interference between different ffeq uencies were due to random phase fluctuatIo~s of the 
individual radiations like in a continuous wave (cw) laser running in many independent longItudinal 
modes. 

Let us now come back to the case of more interest to us where the width ()t of the pulse V (t) 
is of the order of the delay time 1'. We have a single incident pulse with a single carrier frequency and 
they are partially superposed. The instantaneous intensity is given by, 

1 (t, 1') = I V (t) exp (21tivot) + V (t + 1') exp 21tivo (t + r)\2 

= V~ (t) + V2 (t + 1') + 2 V (t) V (t + 1') cos 21tVoT 
(11) 

If we use an integrating detector like a simple photographic plate exposed to the entire sequence of 
pulses, the total intensity is, 

co co co 

1(1') = S V2 (t) elt + S V2 (t + T) elt + 2 cos 21tVoT S V (t) V (t + 1') lit, (12) 
o II 0 

where the first two integrals represent the same total energy due to the pulse and the last integral 
represents the correlation of the pulse, 

00 

r (1') = S V (l) V (t + 1') lit. (13) 

o 

Or, by normalizing, 
~: 

S V (t) V (t + T) ell 
u 

Y (T) (14) 

Then the normalization of the Eq. 12 and subsequent use of Eq. 14 gives, 

i (1') = 1 + Y (1') cos 21tvo1'· (15) 

So the integrated interferogram, due to a single pulse carrying a single frequency, will have a fringe 
modulation (visibility) given by the normalized auto-correlation of the pulse. Determination of this 
fringe modulation function will give us the pulse shape and, as before, the fringe counting (Eq. 5) 
will give us the value of the carrier frequency. We should not interpret Y (T) as due to the presence 
of more than one frequency. 

As a comment, we would like to mention that the width of a pulse carrying single frequency 
can be easily measured by using holography. One can record a hologram of an object of sufficient 
depth (> c ()t) with the help of the pulse and then reconstruct it with a cw beam. The brightness var­
iation of the reconstructed object will give y2 (1'). 

We now consider the case of a very large number of identical pulses of same carrier frequency 
but of arbitrary time origin and phase factor, i. e., 

N 

V (t) = ~ Vn (t - ttl) exp [21tivo (t - tn) + iOn], (16) 

-189-



where V (t) is now a complex quantity. Then substitution of Eq. 16 in Eq. 12 reproduces the same 
equation f?r one pulse multip~ied by th: total number of pulses N. This can be ~hown by elem.entary 
algebra usmg the fact that the mterpulse mterference reduces to zero over a long tIme. Under thIS con­
dition, the Eq. 15 for a single pulse is also valid for multitude of similar but random pulses. If the 
pl1lse~, although similar in shape, contain different carrier frequencies with a spectral distribution 
functIOn F (v), then the interferogram of Eq. 15 modifies to an integral, 

00 

i (-t) = I + y (t) S F (v) cos 2;rvt dv 
o 

(17) 
1 + y (t) U (-t) cos [2Jtvot + <P (t)], 

where we have used the concepts behind the Eqs. 6, 7 and 10. As before, counting the fringes will 
give a rough idea about the central frequency "0 when F (v) is symmetric and <I> (t) is zero. Notice that 
the fringe modulation is now due to the product of the pulse correlation y (t) and the slowly varying 
part U (t) of the Fourier transform of F (v). So if one knows F (v), then, in principle, one can find out 
the shape of atomic pulses from Eq. 17. If we consider F (v) as the physical spectrum, then we must 
first divide the oscillatory part of the interferogram by y (t) before carrying out a computer Fourier 
transformation to find F (v). This requires a knowledge of the pulse shape V (t) or its correlation 
y (t) Otherwise, we shall obtain a spectral function that is wider than the true spectrum F (v). For exam­
ple, in the first line of Eq. 17 one can represent the Fouri::::r integral as f (t) and then use the convolu­
tion theorem (Bracewell 1965) to write, 

i03 (t) = Y (t) f (t) 
(18) 

00 

S [W (v) ® F (v)] cos 2;{vt dv. 
u 

Thus the regular Fourier transform spectroscopy will give LIS a spectrum that is a convolution of the 
true spectrum with the \Viener-Khintchine spectrum (Mandell and Wolf 1965) W (v) which, in turn, 
is the Fourier transform of the autocorrelation of the pulse. Eq. 18 can be used to find the Wiener­
Khintchine spectrum (or the atomic pulse shape) when the physical spectrum F (v) is known. 

We can imagine a more complicated situation where each of the pulses with its carrier frequen­
cy has its own characteristic pulse shape. In other words, i[ the pulse shape is frequency dependent, 
the total interferogram should be represented as, 

i (t) = I + S y (t, v) F (v) cos 2JtVT d". (19) 
II 

Recovery of F (v) under such circumstances will be extremely difficult, if not impossible, without a 
detailed knowledge of y (r, v). 

To illustrate our conceptual approach, we will present some computer curves of visibility for 
two simple examples: (i) a gaussian pulse with a single carrier frequency and (ii) a gaussian pulse 
with eleven independent carrier frequencies. 

(i) Let us consider a gaussian pulse containing a single carrier frequency, assumed to be cut out 
from a stabilized single mode laser. The visibility curve y (t) is the autocorrelation of the gaussian pulse 
which again is a gaussian. Because, by autocorrelation theorem, y (-t) is the inverse Fourier transform 
of the square of the Fourier transform of the pulse V (t) that is a gaussian. Thus y (t) will have a half­
width which is double that of the incident pulse V (t). A computer plot of the visibility curve for 
a gaussian pulse V (t) of a half-width of 10 picoseconds and carrier frequency Vo = 2.7 X 1014 Hz 
is shown in Fig. 1 (the full width at 1/ e value is 20 psec.). The horizontal scale has been represented 
by the order of interference m instead of t. The conversion factor is given by, 

_ d _ d/"Ao _ m 
T-------, 

c cjAo Vo 
(20) 

where d is the path delay. We have plotted the curve of Fig. 1 by actually finding the visibility of the 
fringes at various points by a computer using the Eqs. 11 and 12, instead of directly plotting auto­
correlation of the pulse. This was done for two purposes. First, we wanted to check our program for 
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Fig. 1. Visibility curve for two-beam interference f"inges 
g~ven by an integrated interferogram produced by a gaus­
sian. pulse of width at = 10 picoseconds having a single 
rarner frequency. 

~04 

Fig. 2. The variation i11 time of the visibility of tH'o-beam 
cosine fringes formed by a gallssian pulse of half·width 
bt = 10 JJicoseconds having a single carrier frequency as 
it propagates through the twu-beam interferometer system. 
The displaced dotted curve wrresponds to fringe.~ due to a 
different frecuency if it existed. 

X beam interference by putting N == 2 since the intensity due to multiple beam interference is rather 
complicated in terms of correlation f.unction (Eq. 30, next section). Second, we wanted to plot the 
continuous irradiance variation with tirre to emphasize that the final visibility y (t) is actually the 
resultant of a time varying visibility. This is shown in Fig. 2 with a three dimensional plot for a 
few consecutive fringes around m == 4000 "('t == 1.48 X 10-11 sec., half-width == 10-11 sec.). Since 
the two pulses are displaced, the amplitude due to the second pulse is negligible at the tail of the 
beginning of the first pulse and hence, there are no fringes but a constant background. With 
time, as we enter into the middle of the two displaced pulses, the amplitudes are comparable and 
hence, we have high visibility fringes which again die out in time. The final integrated interfero­
gram is the sum total of these time varying fringes from which the visibility curve of Fig. 1 has been 
plotted. Let us note the dotted curve of Fig. 2. This is the fringe position corresponding to a hy· 
pothetical frequency Vo + by, if it existed. This further lowers the fringe visibility of the resultant 
fringes. We shall consider such a Celse below. 

(ii) Suppose the gaussian pulse of the last example has eleven carrier frequencies cut out 
from a cw laser running in eleven independent longitudinal modes. The intensities of the modes 
are assumed to follow a gaussian envelope (of half width ~v == 1011 Hz). This is because a usual 
laser medium has gaussian gain envelope. Further, these eleven frequencies are concentrated around 
the central frequency Vo == 2.7 X 1014 Hz with ()V == c j2L == (1011 /11) Hz, so that they lie above 
the laser gain threshold. Mathematically, the physical spectrum is, 

+u 

F (v) -- ~ () (vo + n bv) exp [- (vo + n bv):!/ L.v2
]. (21) 

'1=-5 

Each of these independent frequencies will have its own high frequency fringes displaced from each 
other by bm such that, 

m v 
(22) 

But the interferogram will show only the resultant fringe pattern as shown in Fig. 3a and b. The 
horizontal axis shows the order of interferencemo == VOL; for other frequencies the order will be 
different according to m == VT fOI the same delay T. These fringes do not show the modulation due 
to the pulse shape because we have chosen that particular instant to plot these fringes when the 
two pulses are superposed with equal amplitudes. The effect of overall modulation of the time in­
tegrated fringes by both the frequency distribution function F (v) and the pulse correlation function 
Y (L) is shown in Fig. 4. Notice that the visibility curve, although steadily dying according to gaus-
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(0 ) ( b) 
Fig. 3. Theresuitant of two-beam fringe patterns due to many carrier frequencies. The fringes corresjJotld to an 
installt when the two superposed puLses have equal amplitudes. a) corresponds to a delav of P = 'tIM = .55 (or m = 
15(){)), where at is the half-width of the gaussian pulse. b) corresponds to p = 1.01 (or m = 2750); notice the inter­
change of the maxima and m~nima of the resultant fringe pattern comjJared to the case a). 

sian Y (T), has secondary peaks due to the product of Y (T) and the slowly varying part of the Fourier 
transform of F (v) (see Eqs. 17 and 21) which is oscillatory. By comparing Fig. 4 with Fig. 1, we 
see the effect of the presence of different physical frequencies within the same pulse shape. Another 
point of interest is that visibility of the fringes after the first zero, in reality, has undergone a 
change in phase in the sense that the maxima and the minima have undergone a complete interchange 
in their position in the sequence. The reason is clearly illustrated by the resultant fringe of Fig. 
3b. 

t 1. 

V 

e 

6 

.4 

Fig. 4. The visibility curve for two-beam interference fringes 
given by an int'egrated interferogram produced by a gaus­
sian pulse of half-width Bt = 10 picoseconds and carrying 
11 different frequencies of oscillation with mean Vo = 2.7 X 
101

' Hz. In reality the visibility has changed its sign in the 
second peak as illustrated in Figure 3 b (see also text). 

i\1ULTIPLE-BEAM SPECTROSCOPY 

Fabry-Perot and Lummer-Gehrcke interferometers and various gratings are representative of 
this class of spectrometers. These instruments, either through amplitude division or through wavefront 
division, produce a large number of replicated waves with a common-difference path delay T bet­
ween any pair of consecutive wavefronts. When these replicated wavefronts interfere due to real phy­
sical superposition (Roychoudhuri 1975, 1977a) one can expect to obtain spectral information re­
garding the incident pulse. The time impulse response is given by, 
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},'-l 

H (l) ~ TR"'6 (l + we), (23) 
n=O 

where T RII represents the diminution of the amplitudes in multiple reflection due to the trans­
mission (T) and reflection (R) coefficients for r'abry-Perot and Lummer-Gehrcke interferometers; 
for gratings this factor is unity. N is the effective number of pulses produced by the instrument. It 
is limited by the number of slits for a grating, by the size of the plate (number of reflections) for a 
Lummer-Gehrcke plate and by the finesse number for a Fabry-Perot (higher order reflections carry 
very little energy (Rn <=:::: 0). For all the cases, 't is mA/e, where m is the order for interference. An 
incident pulse V (t) exp (2rrivot) will produce a time response of, 

B (t) = H (t) ® V (t) exp 2rrivol 
(24) 

N-l 

~ TR" V (t + m:) exp [2rrivo (t + n't)]. 

n=O 

As in the last section (Eq. 3), if the pulse width 'Ot is much shorter than the delay time 't, the ura­
diance consists of a series of time pulses with no interference whatsoever, 

X-I 

IB (t; 'Ot ~ 't)12 = ~ T:!. R21' V2 (t + n't). (25) 
n~O 

Under these circumstances, these spectrometers are totally incapable of producing any spectral in­
formation; they can only behave as pulse multiplicators (Top et al 1971, Roychoudhuri 1977b). We 
note here that interference spectrometers do not possess any inherent property as a spectrum an­
alyzer; they are only pulse multiplicators. I.f the incident pulse is so long as to produce a super­
position of N beams, then it is the property of the superposed fields to separate (disperse) their 
energies according to their physical frequencies. So, in general, it will be incorrect to use the Fourier 
transform of the response function of such an instrument to a continuous monochromatic wave as 
its time impulse response (Eberly and W6dkiewicz 1977). These passive instruments cannot carry out 
Fourier transform of pulses because it is a non-casual integral process requiring information from the 
past to the future (a pulse propagates through the instrument with a finite velocity; see Roychoud­
huri 1976). 

The second extreme case of Eq. 24 is obtained when the incident is a continuous and mono­
chromatic one with V (i) = 1, 

.'i-I 

IB ('Ot 00 )1:2 = ~ TRn exp [2rrivo (t + n't)] 
nO 

1 + F N sin2 rrNvo't = T ---::-----=--=--=---- or 
1 + F sin2 1tVo't 

sin:!. rrNvo't 

sin:!. rrvo't 

(26) 

where the first form is for a Fabry-Perot or a Lummer-Gehrcke and the second form is for a grating 
with TRn = 1 and also, 

T = T2 (1 - RN)2j (1 - R)2. 

FN = 4R?I) (1 - RN):!.. (27) 

F = 4R / (I - R)2. 

For a Fabry-Perot with N as the finesse numberRs ~ 0; this is approximately equivalent to having 
an infinite sum because the last terms are effectively zero and one obtains the classical Airy formula 
in (26) with the numerators as unity (Born and Wolf "1975). It is important to note from Eq. 26 
that even for a single frequency continuous radiation the so called spectral function has a finite 
width instead of a 'O-function response. This is essentially because the total number of beams which 
are interfering is effectively limited by N. In other words, the continuous radiation has been effect­
ively cut into a long but finite pulse by the instrument. 
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Let us come back· to the case of our major interest, a single pulse of width r,t comparable to 
l' and carrying a single frequency of oscillation. \Ve have from Eq. 24, 

I f-l 

__ ll~~" TRlI V (t + Ill') exp [2:tivo (t + m:)]1 
I (t) = IB (t; r,t /'OW -c)I:! . ., ~28 ) 

Notice that we have changed the summation limit from (N-I) to (M-I) where lJ ::::;; N, to em­
phasize that for a short pulse not all the N replicated pulses are physically superposed because of 
the finite size of V (t) and the displacement -c. 

(0 ) (b) 
Fig. 5. A multiple-beam interferometer replicates a single i" cident pulse into a train of putses with a characteristic re­
{;ular delay. If the delay is smaUer than pulse width, there is partial superposition of the train of IJU[ses. In a) we have 
(/ gaussian and in b) we have an exponential incident pulse. For illustration the carrier frequency oscillation with a 
,-ather long period has been dmwn within the amplitude envelopeJ. The multiple-beam interferometer for this case is 
a Fabry- Perot (R = .Y). 

~~------~~~U~E'~9----------t-•• -.. 
lUE-'_ 

(0 ) (e) 
Fig. 6. Time varying resultant intensity due to multiple-beam interference (Fabry-Perot, R .9) produced by a gaussian 
pulse of tt'idth bt = 1 X 10-' sec. with a single carrieft frequency. Cases a), b) and c) correspond to three different 
delay limes of 't = P bt where p = 0.013, 0.668, and 2.00-/ respectively. All the exampels hatle solid cll1ves corresponding 
to the integral order of interference (ml,:" = V'tI",3 and dashed curves corresponding to immediate half-integral order 
of interferences (ml",3 + 0.5). For convenience of computation, only 10 consecutive pulses out of the entire train have 
been taken into account. F 

First, let us look at the various computer solutions of such a superpOSItIOn. Fig. 5a and b 
show superposition of a train of amplitude pulses of gaussian and experimental form. The resultant 
irradiance pattern varies with time depending upon the delay and order of interference. This is shown 
in Fig. 6a, b, and c for the case of ten gaussian pulses produced by a Fabry-Perot with increasing 
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(a ) (b) 
Fig. 7. Apparent spectral ,-espollse curves (of til1le-integmted energy distribution with change of order of interference) due 
to a Fa/ny-Perot (R = .9) produced by a single incident pulse. Curves in a) are due to a gaussian pulse of width lit = 
1. X 10-9 seconds alld those in '0) are due to an exponential pulse of width 8t = Vrt/2 X 10-9 seconds such that it carries 
equal amount of total energy as that of the gaussian pulse. Notice the increase in half-width of these apparent spectral 
cumes with increasing delay time (plate separation in a Fab'")'-Pl'rot; R = .9) • 
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Fig. 8. Variation of half-widths or finesses with delay time (plate separation in a Fabry-PeTot; R = .9) due to a gaus­
sian (solid curves) alld an exponential (dashed-curves) incident pulse. The data are taken from multitudes of apparent 
sp~tral curves like those shown in Fig. 7. 
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plate separation; each of these figures also has a lower curve (with an amplified vertical scale) to 
show the irradiance variation for the half-integral order of interference (destructive interference). 
This is the idea behind pulse shaping using Fabry-Perots (Thomas and Siebart 1972, Martin 1977) 
and gratings (Roychoudhuri 1977b). But one should note. that these time curves (Fig. 6) will be 
modified for incident pulses containing more than one carrier frequency. In Fig. 7a and b ~re show 
time integrated energy variation with order of interference for a gaussian and an exponenual pulse 
(both carrying equal amount of energy). Although each of these sets of curves show increasing half­
width increasing delay between the pulses, they should not be interpreted as the existence of more 
tl~an one frequency. Similar curves for rectangular pulses are shown in Roychoudhuri (197?a). In 
FIg. 8 we show curves for variation of half-width or finesse with increasing interpulse separat~on. for 
the same gaussian (Martin 1977) and exponential pulses. Thus it is possible, at least m pn~Clple. 
to d~scern between a gaussian and an exponential pulse from their characteristic finesse van~tI~:m. 
DetaIled computer analysis of two-beam and multiple-beam spectroscopy with short pulses contammg 
one and multiple carrier frequencies has been done by Calixto (1977). 

Let us come back to Eq. 28 and simplify it algebraically. 

oW-I 

I (t, 1') = ~ T:2 R2n V! (t + n1') + 2 ~ T'2 RII R"1 V (t + n1') (Vt + mt) 

(29) 
cos 2nvo (Tn - n )1'. 

1£ the irradiance is time integrated, for example, by a photographic plate, then using the defini­
tion of autocorrelation (Eq. 14) and absorbing the total energy r (0) to the left hand side, one can 
write, 

M-l 

i (1') = I- T'.! R'.!II + 2 ~ T'.! R 111 +II Y (m--=-n 1') cos 2 JtVo (Tn - n)1' (30) 
ncO 

I 

This is a way of presenting multiple-beam interference as, the sum of many two-beam interferences. i 

For example, with a continuous incident radiation,Eq. 26 can be rewritten as, 

.v-1 

IB (M = 00):'2 = ~ T2 R2n + 2 ~ T2 RIIIHI cos 2Jtvu (m - n)1', (31) 

where, as before, factors involving T and R should be reduced to unity for a grating. Comparing 
Eqs. 30 and 31, we see that the tringes due to multiple-beam interference with a short pulse are 

modified by the pulse correlation value Y (Tn-n-{:) just as in two-beam interference (Eqs. 4 and 15). 
Comparing Eq. 30 with Eq. 15, we note that it is much easier to do pulse measurement or spectros­
copy with a two-beam interferometer than a multiple-beam interferometer because of the involved 
summation of Eq. 30. Interpretation is further complicated if one has many carrier frequencies F (v) 
for the same pulse, 

M-l c' 

i ('t, v) = I T2 R2n + 2 ~ T2 Rm Rn y (Tn - n1') S F (v) cos 2Jtv (m - n)1' dv. 
n=U m<n () 

(32) 

Then using the arguments of Eq. 17, 

JI-I 

(33) 

cos [2Jtvo (Tn - n)t + <P (Tn - n1')], 

where v() is the mean frequency of F (v) and <P (t) will be zero for symmetric F (v). We again 
notice that, just as two-beam fringes, multiple-beam fringes are also modulated by both the pulse 
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correlation and the cosine Fourier transform of the spectral density function; but now the separa­
tion of the two effects is more complicated. Essentially similar Eqs. 30, 33 will be given. if one has 
many random pulses such that mutual interferences cancel out, as we have argued followmg Eq. 16. 

. In conclusion, we emphasize the two essential points elaborated in this paper. Mo~ulation. of 
l,nterference fringes takes place due to both the finite pulse size and the existence of mul~lple carner 
frequencies. One must not interpret the combined fringe modulation as only due to carner frequen­
cies. Second, analysis of short pulse parameters are much easier with two-beam interferometers than 
with multiple-beam interferometers. 
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