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SUMARIO .

Si el principio de superposicién lineal es una realidad fisica, el efecto de superposicién no puede ser observado
hasta que las causas (sefiales) hayan llegado al espacio y punto-temporal bajo consideracién. Entonces, los patrones de in-
terferencia de haces multiples debido a los interferémetros Fabry-Perot y a las rejillas en cualquier tipo de iluminacién
no-estacionaria deben desarrollarse en el tiempo en lugar de producir un patrén estacionario instantdneamente; la razén
es que los haces multiples sufren retrazos de fase que corresponden a retrazos en el tiempo. En base a esto, se analiza
el comportamiento temporal de los patrones de interferencia y el poder de resolucién de las rejillas, encontrando posi-
bles nuevas aplicaciones como modulacién y generacién de pulsos, y ademds como dispositivos para medir el ancho del
pulso. El presente andlisis utiliza el principio de Huygens-Fresnel en el espacio real en vez de las técnicas del espacio
transformado de Fourier. El andlisis imiplica que el pulso de picosegundos no puede utilizar ventajosamente el poder
de tesolucién de rejillas grandes. Ademds, en el apéndice se presenta el tratamiento para calcular el patrén de difrac-
cién temporal producido por una sola rendija.

ABSTRACT

If the principle of linear superposition is a physical reality, then the effect of superposition cannot be observed
until the causes (signals) have arrived at the space and time point under consideration. Then multiple beam interference
patterns due ‘to Fabry-Perot interferometers and gratings under any non-stationary illumination should develop with
time instead of reaching the steady-state pattern instantaneously, because the multiple beams have phase delays Furrespond-
ing to time delays with respect to each other. On this basis, we have analyzed the temporal development of interference
patterns and resolving power due to gratings and find possible new applications of gratings as pulse shapers, pulse gener-
ators, or pulse width measuring device. Our analysis follows the Huygens-Fresnel principle in real space rather than the
techniques of the Fourier transformed space. The analysis implies that a picosecond light pulse cannot exploit the high
resolution of large gratings. Time diffraction due to a single slit js also developed in the appendix.

1. Introduction

Classical causality implies that interference patterns produced by any conventional interfero-
meter are due to the real physical superposition of more than one physical signal carrying different
information such as phase and frequency. This is easy to demonstrate experimentally with interfero-
meters. A two-beam Michelson interferometer set for dissonance (zero transmission toward the observer)
with a path difference d produces a short pulse of duration d/c when a continuous wave (cw) beam is
suddenly pulsed, due to the delay in arrival of the second beam compared to the first. Analysis and
experimental work along these lines have been reported by Szoke et al (1972) and Milam et al (1974).
Because Fabry-Perot interferometer is a multiple beant type, the situation is a bit more complicated.
But Bradley et al (1964, 1968) reported that the interference pattern develops with time (see also
Stoner 1966). Then Kastler (1974) analyzed the propagation of a single square pulse through a Fabry-
Perot. In the same year Roychoudhuri (1974a) also reported a generalized analysis of the temporal res-
ponse of Fabry-Perots to both single pulse and series of pulses of various widths and separations; the
limits of the conventional spectrometric analysis of the Fabry-Perot fringes under non-stationary situa-
tions were also discussed by this author (Roychoudhuri 1975a). There it was pointed out that the pro-
duction of dispersion (spectral separation) through interference requires the decomposition of the original .
wavetrain into many and then their physical superposition after the introduction of a sequential delay
(see also Roychoudhuri 1976a). Further analysis and experimental works on Fabry-Perot using ultra-
short pulses have also been reported (Martin and Milam 1976, Milam and Martin 1976, Martin 1977).

The importance of short pulse phenomenon is not limited to the field of basic physics for under-
standing the nature of radiation. Applied fields like laser-fusion requires a properly tailored pulse for
inducing efficient implosion. Some solutions to this problem have been obtained by stacking a series
of pulses with the help of a set of mirrors and beam-splitters (Soures et al 1974) or a pair of Fabry-
Perot type etalons (Martin and Milam 1976, Thomas and Siebert 1976). The concept of real physical
superposition of a train of pulses with suitable delays is the basis of all these articles. The pulse train
can be obtained directly from a laser (Roychoudhuri 1977) or by replicating a single incident pulse
(Martin and Milam 1976, Thomas and Siebert 1976). Some of these articles have recognized that the real
physical interference of pulses gives rise to the effect of dispersion (spectral separation). But one can en-
counter articles (Duguay and Hansen 1969, Treacy 1969) in the literature using the dispersive properties
of Fabry-Perots and gratings for short pulses without referring to the temporal limitations.
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The main objective of this paper (Roychoudhuri 1975b, 1976b) is to analyze-the effect of grat- .
ings to short pulses using this concept of real physical superposition that is established in classical in-
terferometry as cited above. To avoid confusion, we point out that we shall treat our light pulses (with
well defined space and time extension) as purely classical waves (with sufficient energy for conven-
tional detection). They are not considered here as either quantum mechanical wave packets or photons.
It ‘is ‘now generally accepted that a very large number of optical phenomena (including photoelectric
effect) can be explained by semiclassical and neoclassical radiation theories without using quantum
electrodynamics (Scully and Sargent 1972, Mandel 1976). Regarding the capability of a high resolution
grating in separating the component frequencies of an incident radiation, many scientists assume an
ad hoc-hypothesis that gratings send instantaneously the various frequencies into the characteristic
directions © given by. d sin ® = m) = mc/v where d is the grating period. For example, see the
articles by Treacy (1969), Landé (1975) and also ‘the reply to my questions at the end of the paper
by Busch et al (1976). Such an ad hoc hypothesis does not have the support of either experimental
work or any basic principles of physics. Besides, the hypothesis of an instantaneous interaction of an
extended object like a grating with a space and time extended radiation pulse violates causality (Roy-
clioudhuri 1975¢, Roychoudhuri et al 1976). It is to be noted that the principle of causality is accepted
in all branches of Physics. Only in the branch of particle physics does one discusses the possibility of
a violation of “causality in the weaker sense” (within the uncertainly limit 3£t > 1) and even that
_is a controversial issue (Heisenberg 1959, Jammer 1974). -

A Fabry-Perot replicates the incident wave into a train of delayed waves by amplitude division,
so does a grating by wavefront division through each of its slits (or steps). An elementary way of
demonstrating the equivalency of a Fabry-Perot and a grating as producers of multiple beam interferen-
ce has been reported before (Roychoudhuri 1974b). To maintain causality, we assume that all the grat-
ing wavefronts propagate with different delays in different directions and for frequency separation,
the incident wave must be long enough that there is real physical superposition of these delayed re-
plicated waves. So, in the extreme case of an echelon grating having a step-delay larger than the width
of an incident pulse, one should obtain a train of N independent pulses identical to the incident one,
instead of an instantaneous separation of the component frequencies in different directions. Such a con-
cept is not at all new in classical optics. For recent experimental applications of this technique see re-
ferences (Busch et al 1976, Top et al 1971). The reverse idea of superposing a train of pulses into a
single one for application to the problem of laser fusion has been reported elsewhere (Roychoudhuri
1977). The general problem of time evolution of short pulses due to diffraction is now well recognized
(Lugovoi 1975, Evans 1976, Caufield and Hirschfeld 1977). Lugovoi (1975) has given an analysis of a
method of estimating the width of an ultrashort pulse using the focusing and diffraction properties
of a lens and a zone plate. Further treatment on the time broadening of a short pulse due to diffrac-
tion by lenses has been given by Evans (1976) and Caufield and Hirschfeld (1977).

In order to explain the finite response time of a grating under pulsed illumination, we have used
the Huygens-Fresnel principle that is simplest yet forms the main foundation of all theories of wave
propagation. To eliminate confusion, we have avoided using Fourier integral decomposition of a time-
pulse into many monochromatic radiations. The carrier frequency of the pulse is the only real physical fre-
quency. We should mention that while Hopkins (1967) and Froehly et al (1973) (see also. Viénot et
al 1977) have used the concept of Fourier transform under related contexts, they have not discussed the
point that the very high dispersive power of a Fabry-Perot or a grating cannot be imparted to picose-
cond light pulses. But this has been briefly done by Caulfield et al (1976). For ultrashort light pulses
we shall see that the instrumental response function for a grating or a Fabry-Perot is, in general, a time
varying one rather than being steady. While analyzing short pulse phenomena, it is important to re-
member that the technique of Fourier decomposition of a time pulse is not a physical principle but a
mathematical theorem. Further, Fourier integral is. a non-causal integral. So its- misuse could give in:
correct results in physics however elegant the analysis may appear (Roychoudhuri 1976a, 1976b,
Rouchoudhuri and Calixto 1977) (see also the appendix). :

2. Huygens-Fresnel Wavelet Approach To Multiple Beam Interference Due To
. Gratings .

We first explain the origin of the time delay between the multiple beams produced by a plane
grating at a non-zero diffracted order from the elementary Huygens-Fresnel principle (Born and Wolf
1975). The same result can also be obtained with mathematical rigour using any of the diffraction
theories. Actually the concept that different parts of a diffracted wavefront from a grating should
arrive at the plane of detection with different delays, has been used under various situations (Schuster
1894, Feynman et al 1966). The time diffraction pattern due to.a single slit is developed in the Ap-
pendix. Here we shall consider a grating of very narrow slits with periodicity d (Fig. 1). It is placed
at the front focal plane of the lens L. X is the observation plane placed at the rear focal plane of the
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Fig. 1. Periodic delay of the Huygens-Fresnel wavelels in arriving at the observation plane from the grating plane.

same lens. Each slit of the grating gives rise to a Huygens-Fresnel spherical wavelet which becomes a
plane wavelet after passing through the lens. This is the standard arrangement to obtain an exact Fraun-
hofer diffraction pattern. The wavelet, originating at the axial point A, passes through the lens parallel
to the X-plane. All off-axis wavelets, although passing through the axial point O in the X-plane, arrive
at angles given by,

0, ~ n(d/f), (1)

where d is the grating period, f is the focal length of the lens and n denotes the wavelet originating
from the n-th slit. Thus the delay for the n-th wavelet at a point x of the X-plane is,

e — ”‘./x“[f.f_}' (2)

The periodic path difference between any pair of consecutive wavelet is,

de=—ixd/f, (3)
and the periodic time-delay is,
T == (4
I'he order ol interference is given by,
e =Gy — wyT. (5)

We assume that the pulse is obtained from an ideal ultrafast switching device in front of a stabilized
single-mode (v,) cw laser. This carrier frequency v, is the physical frequency of the radiation. We
assume the width of the slit to be very small compared to the focal length of the lens. The distance x
on the observation plane is much smaller than the width of any one of the singleslit patterns. Under
these conditions the inclination factor of any rigorous diffraction theory reduces to unity.
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Fig. 2. Origin of the periodic delay belween the wavelcls iwwhile being veflected from the steps of a blazed grating.

We consider large step echelon type gratings because they have high resolution and high light
gathering power. Since these gratings can produce a large path delay, they are more powerful instru-
ments [or pulse-shaping and pulse-generating than plane gratings. Figure 2 shows a small section of such
a grating. An incident wavefront is split into a series of wavefronts by reflection from the grating steps.
After reflection the path difference between any two consecutive wavelronts is A which can be com-
puted from the relevant geometrical data. At the axial focal point O of the lens I we have the blazed
order m,

m = Afk. (6)
Correspondingly, the common-difference time delay between the series of wavelronts is,

T = A o= (7)

But, away from the axial point, there is an extra path difference due to the tilt of the wavelronts
produced by the lens L which is given by & and can be computed very similarly to Eq. 3. The total
order of interference is,

O — G T (8)
and the delay-time is,
T = (AL B)lc = mifw,. (9)
An incident time pulse F(t) cos 2nv,i spatially extending over the entire grating plane will prod-

uce a series ol similar pulses which will arrive at the observation plane with delays nt, where n is the
slit number. The corresponding amplitude response is,

N-1
T Z f(t — n1,) cos [2m, (¢ — n,1)]- (10)
m=0
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For convenience, we are assuming that the arbitrary source phase is zero and the moment of arrival of.
the first pulse at the observation point is t. Foliowing causality, if the width of f(t) is nt,, the sum
extends over n terms (n < N). Further, since the series of N beams are temporally delayed from each
other, they do not arrive at the observational plane at the same instant. Thus grating patterns, like
those of Fabry-Perot and Michelson interferometers, also envolve with time. But, when the field f(t)
has reached the steady-state (and extends from. 4-co to —co) and assuming the amplitude due to
each slit to be unity, then the steady-state grating irradiance, with long time average for conventional
slow detectors, is

gl = }f-] >

. 1 sin?xvoNt,, an

s .2 Sin2JIZVon

- 2
2 cos [2avy (L — nt,)l| dt

n-0

Later we will ignore the constant factor 1/2 just for convenience of writing. -The same Eq. 11 also
gives the temporally evolving irradiance for a transient illumination where f(t) is wide enough that
several pulses are physically superposed; but N must be replaced by the running integer n where the
running time is ¢ = nt,, and 1, is large compared to one optical cycle 1/v,. Observation of the pattern
at an integral order m = v,1,, the time evolving irradiance without normalization, is

1g(t = nrm)12 = n2 (12)

It is to be noted that the time average of Eq. 11 would not be valid if the original pulse contained
one or two cycles of oscillation. Under this condition, the wave should be represented by a real func-
tion rather than a complex one and one can do at best the time integration to find the total energy
rather than time-averaging to find the energy per unit time. Further, the arbitrary source phase fac-
tor will be very important. In short, the concept of coherence, spectroscopy and diffraction will have
to be redefined for extremely short pulses

2.1 HUYGENS-FRESNEL WAVELETS IN THE NEAR FIELD OF A HIGH FREQUENCY
GRATING

In normal spectroscopic works one usually records the Fraunhofer diffraction pattern at the
Fourier transform. (rear focal) plane of a lens.  This'is what we have done above. But it is instructive
to look at the near field for a high frequency grating (Shulman 1970). When the separation d bet-
ween two consecutive grating grooves is so small that it subtends only several degrees at a point within
the near field (for the whole grating), the Huygens' secondary wavelets from the nearby independent
grooves are spatially superposed (Fig. 3). Such real physical superposition of the appropriate sets of
secondary wavelets gives rise to the various diffracted wavefronts that propagate ultimately as inde-
pendent diffraction orders. For low frequency gratings like echelons; the wavelets from the nedrby steps
cannot interfere appreciably in the near field and the Fraunhofer pattern- can be generated in the la-
boratory by superposing them at the rear focal plane of a lens. In Fig. 3 we are considering a small
section (18 grooves) of a high frequency grating illuminated by a rectangular pulse of width 3t con-
taining 17 complete optical cycles of a radiation of wavelength A,. We are assuming that the pulse
is produced by an ideal chopper from a stabilized continuous wave laser running in two independent
longitudinal modes (A, :A, = 5:6). So the pulse will contain a little over 14 optical cycles of A, ra-
diation. ) ‘ :

For convenience of geometric analysis we assume that the grating grooves are ideal lines. In the ab-
sence of the grating the pulse would have been occupying at some moment the space between the lines
AB and CD where AC = BD = 17)},. But the presence of the 18 line grating (with grating constant
d = 3),) has caused the pulse to be composed of 18 secondary spherical wavelets at every plane bet-
ween 4B and CD. We are showing only a few specific sets out of all these wavelets. 4D and EF are show-
ing the formation of first and second order diffracted wavefronts for },. These wavelets are drawn with
radii J4 4 n); where n runs from 0 to 17 for the consecutive grating lines. Similarly, BG and HI are
showing the formation of first and second order wavefronts for A,. It is to be noted that due to the limited -
duration of the incident pulse, only the first order diffracted wavefront due to radiation A, has 18 wave-
lets from all the 18 lines. So this wavefront, when focused, will show the characteristics of an 18-slit grat-
ing. All the other wavefronts are formed out of sets of secondary wavelets whose number is less than
that of the grating lines, namely, 18. For example, the first order wavefront due to radiation 3, con-
sists of 15 wavelets and hence, when focused, will show a characteristic pattern of a 15-slit rather than
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Fig. 3. The formation of the first and second order spectral wavefronts out of Huygens secondary wavelets produced
after a pulse has passed through a grating. In this particular example the pulse of spatial width AC = BD = 17\, has
two radiations, ), and },. The limited width of the pulse causes some of the diffracted wavefronts to be formed only
partially. ,

an 18slit grating. Thus it is easy to appreciate why the instrumental function, or the grating response
curve, depends upon the pulse characteristics and wavelengths of the constituting radiation besides the
characteristics of the grating. :

3, Temporal Development Of Echelon Diffraction Patterns

In this section we develop several particular cases of the transient response of high resolution
echelon gratings at the Fourier transform plane due to semi-infinite step, single pulses of  different
widths, and series of pulses of different widths and separations. In all cases, unless mentioned other-
wise, we consider the pulses to be rectangular and to be produced by an ideal ultrafast switch from
a stabilized single mode (vo) c¢w laser. As mentioned before, we consider the carrier frequency v, as
the only physical frequency of the radiation.

3.1 SEMI-INFINITE STEP

A graphical representation for a semi-infinite step is given in Fig. 4 where the incident semi-
infinite step has been replaced by N wavefronts but each delayed from the previous one by the grat-
ing order delay-time, 1, = m/vo. This can be represented by the sum of Eq. 10, but the graphical
representation is easier to follow. From the moment of arrival of the first wavefront (¢ = 0) until
t = 1, the detector plane receives irradiance due to one wavefront only. Then from ¢ — v, to ¢t = 21,
the irradiance is due to the superposition of two beams generating a two-beam pattern; then from
21, to 3t,, a three- beam pattern, and so on. The temporal development of the irradiance at an inte-
gral order, as would be recorded by an ideal ultrafast detector, is shown in Fig. 5, where the differ-
ent curves represent the responses at the various bright orders m-th, 2m-th, 3m-th, etc. For con-
venience of plotting, we have assumed that the grating has only 8 slits and the amplitude due to
each slit is unity. All the irradiances increase in steps but under a parabolic envelope (see Eq. 12).
The horizontal arrows indicate after how much time the particular order reaches the steady-state irra-
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Fig. 4. Response of a grating to a semi-infinite step pulse.
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Fig. 5. Response of a grating to a semi-infinite step pulse; temporal development of irradiances for various integral
orders.

diance. We define this time as response time (or time constant) of the grating. For the m-th order
we have

%, = N1, (13)
For a plane grating there also exists the zero-order, where all the wavefronts arrive simultaneously.

But the zero-order has no dispersive power and is of little interest to a spectroscopist. Let us now
look at a half-integral order,
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VT = (m + 1), (14) SR
where m is an integer. The irradiance can be found using Eq. 11, m/’\

: $in? VoM Ty,
: t = nt 2z
le )| $in? wVeTmay

‘ = sin? nx/2
(15)

where n, the number of superposed beams, varies in steps with time following ¢ — 7t,,;/2. The factor
sin? nx/2 indicates a series of evenly delayed square pulses of light of duration T/, seconds separated
by dark temporal regimes of equal width as n evolves serially from odd to even integers. This is shown
in Fig. 6. Similarly, when steady-state illumination to a grating is suddenly turned off, a series of rec-
tangular pulses should be detected for a period of Nt,,;,2. Thus we see that a grating can be used
to produce a series of rectangular pulses of width shorter than the incident pulse. Oscillatory pulses
of more complicated nature are produced at positions where the grating order is in between integral
and half-integral. .

Irradiance

0.57

0

o] T 4 3T 47 5T 67 T
Time

Fig. 6. Resi)ohse of a grating to a semi-infinite step pulse at a half-integral order. Theoretically we should be able to
detect a series of rectangular pulses all with widths equal to the delay time ~.

[We now briefly digress to a diffraction pattern due to a beam of quantons -and the statistical particle scattering
interpretation of quantum mechanics. Physicists generally accept the fact that any interference and diffraction pheno-
mena with light can be completely explained by superposition of waves. Hence the forceful introduction of photons
to these phenomena is not only unnecessary but also confusing (Scully and Sargent 1972, Roychoudhuri 1975c,
Roychoudhuri et al 1976). However, people introduce photons in diffraction to explain, the quantum concept. Probably
this is due to the fact that particle diffraction ()}, = h/p) produces patterns which are very similar to those produced
by light. This diffraction can be explained by the statistical particle scattering concept using Duane’s (1923) momentum
quantization rule, as advocated by Landé (1975) and supported by Ballentine (1970). Duane’s rule is

Ap, = nh/d, (16)

where d is the grating period and Ap, is the quantized momenta exchanged by the particle with the entire grating ins- -
tantaneously at the moment of interaction. The basic assumption of this paper, that interference is due to real physical
superposition of waves at the observation plane, implies a temporal development of the diffraction pattern due to
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nomena. To test Landé’s (1975) argument, let us propose a observation. It also implies that interference is a local phe--
different times of arrival of the “wavelets” at the plane of twin experiment with stabilized continuous *“waves” of
monochromatic light (A;) and of monoenergic electrons (Ao = h/p). If a fast detector is set to detect the diffraction
pattern from a grating and a shutter is suddenly opened to let the light beam be “scattered” from it, some time varying
irradiances should be detected as predicted before. If the same result also happens for the electron beam it would be
hard to accept Landé’s (1975) argument of instantaneous interaction of an electron with the whole grating, especially be-
cause it predicts that no particle should arrive at all if the detector is set at a half-integral order (to be exact, when N
is even), The question is, can statistical particle scattering replace the wave-particle duality and explain to phenomenon
of diffraction as a pure scattering process?]

3.2 A WIDE RECTANGULAR PULSE

Now consider the response of a grating to a single rectangular pulse. If the order at which
the diffracted irradiance is recorded is m, then the corresponding time delay between the consecutive -
wavefronts from each slit is t, = m/v, (Eq. 7 or 9). Then, for computational convenience we ex-
press the width of the pulse 3¢ in terms of t,,

3 = qtm, 17

Assume the particular case ¢ = 6 and the number of slits in the grating is N = 8. The general
solution is given by Egs. 10-12 where V(t) is a rectangular function of width 61, and unit ampli-
tude; it is sketched in Fig. 7. Because we have only 8 slits, there can be only 8 pulses generated by
them with delay 1, and, because the width of the pulse is 6t,, we cannot have more than 6 pulses
superimposed at one time. The peak of the m-th order response, solid curve of Fig. 8, shows the evolu-
tion of irradiance with time. Figs. 7 and 8 also show the possible solution: and response of the grating
at the 2m-th and 3m-th integral orders.

m-th order '

§t= 61Ty IJJJ

i L
fe oo, B8765432]
T
2m-th orderl m %% 0
§1=37T, LT FEL =3 %en
. . . 8 7654 3 2 |
107,,, 3T,, O
3m-th order
J B T3m
. _' L N
61:213”’] = - _— __ N |
, 8 7 6 S5 4 3 2 |
9T3m 2'63m 0

Fig. 7. Response of a grating to a rectangular pulse. Graphical solution of the problem for various orders.
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Fig. 12. Response of a graling to a series of rectangular pulses with pulse separation equal to the delay time for the
grating order of interest. Under these conditions an oscillatory “steady” ‘pattern is obtained.

be eliminated by matching appropriately the pulse separation At and the pulse width §¢ with the grating
order. Suppose,

d = m/ve, ' (34)
and,
At = pm/v,, (35)

where p is any number. When the steady-state has been reached after a time 1, = Nrt,, the detector
at the m-th order will be receiving constantly the superposition of,

N, = N/p, (36)

beams where N, is defined as the reduced or effective number of grating grooves. Thus the spectroscopic
analysis of such pulses from a grating pattern appears to be possible, but the reduced resolving power is,

R = mN/p, (37)
and the instrumental curve corresponds to a grating pattern of N ,-instead of N-grooves. As a specific
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example, Fig. 13 shows a graphical solution to the special case p — 4 and N = 8 which never has more
than two-beam interference. Of course; p must be greater than unity to maintain the separation bet-
ween the individual pulses. Before concluding, we shall briefly comment on the difficulty of spectral
analysis of pulses from a mode locked laser. If the number of modes that are locked is n with the fre-
quency of the central mode as v, and the intermode spacing as dv, the width of the main pulse in the
train would be (Yariv 1971),

2L 1 =

= — = , (38)
ne ndv

where L is the length of the laser cavity. The resolving power that is required to resolve these modes is,

Vo c/A 2L
= = — (39)
dv c/2L A

RTCQ =

But the maximum possible resolving power that can be achieved with an isolated single pulse is limited
by the very width of the pulse ¢ d¢. Then, using (38),

Rpos = o = 00 L () === (40)
o c/vo n \dv n

Thus the modes (frequencies) of a single isolated pulse from a mode locked laser can never be resolved
in the classical sense. The question now arises as to the possibility of resolving the modes if a whole
train of mode locked coherent pulses are used. Now the resolving power would be limited by the path
difference (in number of waves) between the first and the last pulse in the train. But, can one observe
the n modes spectrally separated with a suitable high resolution spectrometer? It may not be quite pos-
sible. This is because when the n modes with a steady phase relation interfere to form mode locked
pulses in the laser cavity, the mean frequency (Yariv 1971) v, of the modes becomes the carrier frequen-
cy of the pulses and the information corresponding to multiple frequencies has irreversibly changed to
amplitude modulation to produce the pulses. We cannot easily unlock them to reproduce n separate
frequencies with continuous amplitudes. Still it is worth attempting such an experiment with an arrang-
ement like that of Fig. 13 or its equivalent with a Fabry-Perot (Roychoudhuri 1975a).

6t= T,
P m At = 4T —=
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Fig. 13. Response of a grating to a series of rectangular puises where the width equals the delay time for the gra-
ting order and the separation equals a multiple of the delay time. The response is a steady-state pattern.

4. Summary

To the principle of linear superposition we have added the principle of causality in the sense
that the effect cannot be observed until the signal (cause) has arrived at the space and time point
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under consideration. Neither of these principles are controversial in classical physics. This leads us to
believe that the phenomenon of interference is the real physical superposition of the waves carrying
different information. Thus two-beam (Milam et al 1974) and multiple-beam (Soures et al 1974, Roy-
choudhuri 1975a, Thomas and Siebert 1976, Martin and Milam 1976) interferometers give rise to tem-
porally evolving interference patterns because the interfering beams carrying different phase inform-
ation are temporally delayed from each other.

The main objective of this paper is to extend the above mentioned concept to gratings and
generalize it to diffraction phenomenon with the help of Huygens-Fresnel principle that is used in all
wave analysis. We have shown that wavefronts from individual grating grooves arrive at the focal plane
with a periodic time delay. Hence, gratings produce a time varying pattern like the Fabry-Perot inter-
ferometer with pulsed light. This gives rise to time-evolving instrumental response curves (Egs. 18, 17)
that are different than those produced by continuous wave illumination. This property of gratings (Roy-
choudhuri 1977) and Fabry-Perot’s (Thomas and Siebert 1976, Martin and Milam 1976) can be exploited
for pulse shaping, pulse generating and pulse width estimation if a fair degree of knowledge of the
spectral content of the parent pulse is available. Conversely, on trying to obtain spectral information
of an ultrashort pulse by spectrometers, prior knowledge of the pulse shape is essential through other
experiments such as two-photon-fluorescence. This helps to compute the pulseshape and order of inter-
ference dependent instrumental response curve that must be deconvolved from the recorded spectrum
to obtain the true spectrum of the source pulse. Otherwise, there is a danger of concluding a wider
spectral width for the same pulse while analysing it with Fabry-Perot’s or gratings of increasing order
of interference. This point is apparently ignored by the general literature (Bradley and New 1974) on
ultrashort pulse spectroscopy. The problem of spectroscopy is further complicated 1f the pulse is phase
modulated because the interference fringe moves in space with phase modulation.

Further, this analysis (Sec. 3.4) shows that the problems of spectral interpretation can be greatly
reduced for a long train of coherent pulses when the pulse separation is an integral multiple of the
pulse width that, in turn, is matched with the delay time of a properly chosen grating order (see also
Ref. 8). But it is difficult to make a meaningful spectral analysis of mode locked laser pulses. A possible
experiment has also been proposed (Sec. 3.1) by which to test whether individual particles exchange
momentum with the entire grating instantaneously in particle diffraction experiments (Landé 1975, Roy-
choudhuri 1975¢, Roychoudhuri et al 1976). And we have argued (Sec. 3.2) that the validity of fre-
quency-time indeterminacy principle (Popper 1965, Caulfield et al. 1976) in classical spectroscopy de-
pends upon a general proof that there cannot exist any method to determine the pulse shape exactly
without the knowledge of its spectral content.

I am thankful to A. Marechal, W. M. Rosenblum, R. H. Noble and many other colleagues for
helpful suggestions and inspiring discussions. Further acknowledgment is due to S. Calixto for making
the computer curves. The materials of this article have been presented in several annual conferences
of the Optical Society of America (Roychoudhuri 1975b, 1976b, Roychoudhuri and Calixto 1977).

5. Appendix

In section 2 we have developed the time varying diffraction pattern for gratings with extreme-
ly narrow slits and for wide step echelon gratings where only the step delay in the arrival of the sig-
nals from different slits (steps) has been taken into account. We did not take into account the con-
tinuous variation in the arrival time of the signals from the continuously distributed points within the
same slit. But such a time variation is not of great consequence for visible light pulses of width up
to about tenth of a picosecond (1013 sec.). This can be appreciated from the fact that a first order
diffraction implies a path delay of A and hence a time delay of

Aec = vt ~ 10-15 sec. (38)
But, for the sake of completeness and in anticipation that a few femtosecond pulses may be produced

in the future, we shall develop here the space-time diffraction pattern due to an aperture.

Established diffraction theories (Goodman 1968, Born and Wolf 1975) give us the Fraunhofer
pattern u(x, y, t) due to an aperture U(E, n) when illuminated by a continuous plane wave of single fre-
quency exp (2mivot),

A
u(x, y, t) = Re Yo

elkZ, p2mivit j‘dEJ‘dn U (g, n) e-2miv (§oiny) /fe, (39)

2ic

where Re implies the real part of the entire expression that gives the instantaneous amplitude, Z,
is the axial optical delay between OO’ (Fig. 14) and (Ex + my)/f is the optical delay or the perpen-
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Fig. 14. Derivation of space-time diffraction patiern by an aperture. L is the transforming lens; the front focal plane
(E-m) is the aperture plane and the rear focal plane (x-y) is the observation plane.

dicular distance from the point (x, y) of the inclined plane wavelet (crossing O’) due to the spherical
wavelet originated at the point (§, m). The last physical interpretation is more easily appreciated for
the one dimensional case. In order words, besides the overall delay from O to O’ of T, = Z,/c, the signals
originating from different points (E, n) arrive at the observation point'(x, y) with variable delays ¢,
given by

EE M X y) = (Bx + wy)/fe (40)

For a continuous radiation illuminating the aperture, such an optical time delay implies only a phase
delay factor as in Eq. 39 without any time dependence and hence one can integrate over the entire
aperture. But if we modulate the illuminating amplitude exp (2miv,t) by a time function V(t), the
phase factor in Eq. 89 or 40 is time-dependent and hence the integration limits cannot extend over
the entire aperture at a time. This is because, while signals from some parts of the aperture have
already arrived at the (x, y) point, some are still on their way from other parts of the same aperture.
Further, these amplitudes are multiplied not only by the aperture function U(E, n), but also by the
time function P(t). Then the space-time diffraction pattern u(x, y, t) should be written as,

&ty 7(E)
u(x, y, t) = Re D e2miv,t dE dn U (E, n) V (t)e2mivdamn/ic (41
£ n

0 0

where D represents all the constants before the integral of Eq. 89, (E, m) is the point from which
the light signal arrives earliest (¢t — O for the observer) at the observation point (x, y) and (E(t), n(t))
is the point from which the signals have just arrived at a time ¢ given by Eq. 40. It is to be noted that
fo; a given time and observation point, Eq. 40 defines a straight line and hence all the signals which
originate on this line arrive simultaneously at (x,y). Thus the whole aperture can be imagined to be
built by laying very many parallel lines represented by the following intercept form,

E n_
Gaiy + Gapy =

The amplitude contribution due to each of these lines will depend upon the length of the lines in-
tercepted by the aperture U(E, v).

(42)
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We shall simplify our example by considering a rectangular amplitude slit with U(E, n) = 1
within the rectangle 2a by 2b. A second simplification is achieved by considering the point of obser-
vation on the X-axis (i. e, y = 0). Then Eq. 40 indicates that the time delay is independent of .
n-coordinate. This means that for a given £ all the “source points” lying on a line parallel to y-axis
will arrive at x at the same time. A further simplification can be achieved by assuming the incident
pulse 7(t) to be a rectangular one of width 3¢ and of unit amplitude. Then the space-time diffraction
pattern at x for a time interval ¢ < 8t is,

§(t) b
u(x, 0, t) = Re D 2! dt e-2mivide/fe J‘ dy
a -b

tkz

= Re D2b e?*:¢ [E(t) — a] sinc —l;;— [E@) — a] e - +al - (43)

The physical effect of this time dependent diffraction pattern is as if the aperture is slowly opening up
from one end to the other. If the pulse width 3¢ is much larger than the time delay in arrival of signals
from J-a to —a, i. e, if,

2ax
3t > T = T, (44)

the pattern will become steady after a time 1, (the time constant of the aperture) because &(t) could be
replaced by —a in Eq. 43. The pattern will become time varying again for an interval t, before com-
pletely disappearing. Finally, if the incident pulse has more than one incoherent carrier frequency, the
Eq. 41 should be integrated over these frequencies after taking its square modulus.

Our formulation of the space-time diffraction phenomenon and the corresponding prediction
of particular results are quite different from the standard formulation that can be found in texts
(Goodman 1968, Born and Wolf 1975) and recent publications (Froehly et al 1973, Vienot et al
1977). The standard formulation follows the following steps. The time amplitude modulation func-
tion V(t) is replaced by the time independent Fourier frequency integral as a summation of
many continuous monochromatic radiations. The limits of the space aperture integral cover
the ‘entire aperture rather than time varying limits as we have used. Then the Fourier fre-
quency integral is associated with the constant factor v, (Eq. 39) obtained from the diffraction formu-
lation based on Huygens-Fresnel principle; thus equating the carrier physical frequency v, of the ra-
diation with the purely mathematical Fourier frequency v. But this helps one to rewrite the Fourier
integral as the time derivative of the incident pulse V(t). The final result of this unphysical mathema-
tical trick is that the space-time diffraction integral Eq. 41 becomes a space integral over the entire
aperture that is multiplied by the time derivative of the amplitude modulation factor V(t) (Goodman
1968). That this result is non-physical can be easily verified by taking a few simple counter examples
like ¥(t) = constant, Ct, a rectangular function, etc. The time derivates of these pulses are respectively
zero, constant and a pair of delta functions with opposite signs. Thus, when the incident pulse is a
square one, we are supposed to have a pair of delta function type response irrespective of the length
of the rectangular pulse. Whereas we know that the result should converge to the stationary illumina-
tion when the pulse is very long as predicted by our causal formulation (Eq. 43). A further mathe-
matical trick (Froehly et al 1973, Fouéré 1976, 1977, Vienot et al 1977) gives a modified result: “the
time response attached to a given geometrical pupil is the convolution of the temporal input function
with the first time derivative of the projection of the pupil along the considered direction of diffrac-
tion” (Vienot et al 1977). This can also be shown to be wrong by taking a simple counter example like

a rectangular aperture and considering the diffraction in the forward direction.

We would also like to mention the recent article (Eberly and Wédkiewicz 1977) on the time
dependent physical spectrum of light where the apparent spirit of the authors is to avoid defining spec-
trum based on any Fourier transformation. To this spirit we agree very much (Roychoudhuri 1976a).
But they define the spectrum of a time-pulse based on the Fabry-Perot response curve. This is not
proper from the stand point of Physics. Then other spectrometers like prisms and gratings with differ-
ent instrumental response functions will give different spectrum for the same pulse. Further, the
authors take the Fourier transform of the ideal Airy function of a Fabry-Perot as the time impulse
response. Thus they are violating causality through the use of non-causal Fourier integral and thereby
going against the spirit of their own paper. The time impulse response should be directly obtained
as the sum of the train of the replicated pulses as in Roychoudhuri (1975a) Ref. 8 or Eq. 10 of this
paper. And one will find different intensity response curves for the same pulse with the same carrier
frequency v, for different orders of interference as shown in Figs. 10 and 11. Do they correspond to
different physical spectrum?
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