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ABSTRACT 

   We “see” light only when some material detectors (dipoles) respond to the incident EM field. EM fields do not 
operate on each other to make themselves visible to us. Superposition of multiple fields becomes manifest only 
when the intrinsic properties of these dipoles allow them to respond to all the superposed fields simultaneously and 
thereby summing the effects of all the fields. Accordingly, depending upon the different intrinsic properties of the 
detectors and the physical conditions of measurements (integration times, etc.) the manifestation of the “coherence” 
properties for the same set of superposed fields could be different. It is then prudent to represent the autocorrelation 
function for superposed fields in terms of the dipole undulation of the detectors rather than the fields themselves. 
Then the physics of the detectors and the measurement conditions automatically becomes an inherent part of the 
discussion on coherence. We illustrate our premise by presenting the analysis to understand the behavior of beam 
splitters, two-beam interferometers and an N-beam grating “interferometer” in terms of the autocorrelation functions 
due to a short pulse as would be experienced by the material dipoles of the beam splitters and detectors. Our 
approach reveals that superposition effects to become manifest the multiple fields must be physically superposed 
simultaneously on the detecting dipoles and hence the process is causal. 

Key Words: Short pulse autocorrelation function, Coherence function; Interference of light, Non-interference of 
light; Two-beam interferometers, Grating fringes with a short pulse. 

1. INTRODUCTION 

       1.1. Justification of the paper, the sustained paradoxes.  

       The timeliness of the paper can be appreciated by the fact that Glauber has shared the 2005 Physics Nobel Prize 
for developing the theory of quantum coherence. The engineering importance of the paper derives from our belief 
that innovative ideas for new applications of ultra short light pulses may be generated our community if we can 
bring the conceptual congruence between the engineering and the physics definition for the same photon that 
constitute our light pulses. The many engineers tacitly assume the photons to be contained within the volume of the 
pulse and hence they are “local” in space and time because the measurability of the energy of the pulses is 
determined by the classical optical arrangements (like interferometers, laser cavities, optical modulators, photo 
detectors, etc.). The measured results (“reports”) by these instruments and detectors help us define (imagine) all the 
spatial and temporal characteristics of the light pulses, which are always well defined in space-volume and time-
duration. In contrast, the physicists tend to define photons as the Fourier monochromatic modes of the vacuum [1], 
which, by virtue of the time-frequency Fourier theorem, are necessarily “non-local”. We now add to this physics 
model the traditional hypothesis that single photo-electron “clicks’ are exclusively due to the absorption of “one at a 
time”, indivisible, single photons. This enforces one, specifically while carrying out interference and diffraction 
experiments at extremely low light levels, to assign several non-causal properties to the photons, like (i) “self-
interference”, (ii) “delayed choice”, (iii) “teleportation”, etc.[2]. Thus, we have some paradoxically divergent 
concepts apparently held by many engineers and physicists. Recent literature shows that attempts are being made to 
bring some convergence [2, 3, 4] 
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1.2. Reality of superposition principle

For centuries we have been loosely using the phrase “interference of light” even though we know that
electromagnetic fields (EM) do not operate on each other in the absence of mediating material media, which respond
to EM field vectors as dipoles. In free space or in a non-interacting medium, the superposed fields can propagate un-
influenced by each other even while occupying the same physical volume, whether the beams are collinear or just
crossing through each other. Other wise the visual world would have always appeared as scintillating speckles and
the WDM fiber optics communication would not have worked. This is true whether the superposed light beams (i)
are generated by a “coherent” laser source or an “incoherent” thermal source, (ii) contained distinctly different E-
vector oscillation frequencies, (iii) have E-vectors that are oscillating parallel or orthogonal to each other. Light is 
observable (visible) to us only through the energetic transformation experienced by some polarizable detecting
atoms or molecules. The effects of superposition of more than one EM fields in a physical domain can become
manifest only when the observing detector is capable of responding to all the E-vectors simultaneously and thereby
summing and displaying the superposition effect. Thus, what we call “interference of light” is actually the vectorial
summing capability or incapability of the detecting molecules and the correspondingly proportionate energy
absorption from the fields by them. As a result, the spatial and/or temporal variations in the number of transitions of
elementary detectors within the domain of superposed fields appear to us as “interference” fringes. Consequently,
registrations of “interference” fringes require real physical superposition (presence) of multiple fields on the
detecting molecules that can be simultaneously experienced by them [5]. Further, the response times of most of our
photo detectors (silver halide molecules, photo conductors, etc.)are mostly femto seconds or shorter. We also know
that all light beams have finite time duration; they are fundamentally pulsed. Even a laser has to be turned on and off
for an experiment. If the pulses carry multiple carrier frequencies and phases, or these parameters are chirping, the
spatial and temporal location of the registered “fringes” are different and the integrated result appears as reduced
visibility fringes. This is not intrinsic “incoherence” of the EM fields; they have successfully delivered their energy
in sub-femto second time periods. Thus the “coherence time” should be defined with reference to integration (or
exposure) time of the detecting system and in terms of the degree of overlap of the superposed pulses, and of course,
frequency and phase distributions and their chirping of the EM fields would be essential input parameters. Pulses
with extremely steep (femto second domain) phase and frequency chirping will require deeper investigation of the
time required for light induced measurable transitions, especially since EM fields deliver energy while on their
eternal highest velocity existence.

Since light does not “interfere” with light (QM defines them as Bosons), it is hard to create a physical model for
the process behind the observed superposition effects that are congruent with the popular belief that an indivisible
single photon can “interfere” with itself. Because of the inherent quantum nature of electrons and their binding
energies in different detector molecules, all photo chemical and photo electric detectors are forced to produce
discrete set of “clicks”. This is not a definitive proof that multiple superposed wave packets (photons) cannot induce
excitation and cannot collaboratively share energy to bring about transitions of the detecting dipoles [5]. In fact, in a 
series of very careful experiments, Panarella [6] has found that the intensity of the light beam must be equivalent to
four photons at a minimum to produce interference effects (diffraction rings by a pinhole). Since interference effects
and coherence functions are almost synonymous in current literature [7], we present arguments that the actual
coherence functions should be interpreted, not as auto- or cross-correlation between different superposed fields, but
as auto- or cross-correlation between the different dipole undulations induced by the superposed fields. For this
paper, we do not need to use any quantum mechanics. Our arguments will be based on easy, semi-classical
formalism since Sudarshan has already established (“Optical Theorem”) that Glauber’s quantum coherence
functions are equivalent to Wolf’s classical coherence functions [7]. Besides, Jaynes, Lamb, Scully, etc. have
consistently shown that semi-classical formulation explains photo induced reactions very well [8, 9, 10]. We will
treat light as classical wave packet with a uniquely defined carrier frequency and an amplitude envelope,

( ) exp[ 2 ]a t i t . Section 2 is devoted to explaining two-beam superposition effects in terms of second order
temporal coherence function. We will underscore the critical role played by the beam-splitters and the relative phase
shift “ ” they introduce on “external reflections” (reflection from a denser boundary back into the lighter medium)
[11] , which is essential to conservation of energy. Section 3 will model the response of an N-slit grating in terms of
summation of all possible combination of second order temporal coherence functions between the N beams
produced by the grating.
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2. TWO-BEAM SUPERPOSITION 

2.1. Re-direction of field energy by a passive dielectric boundary 
All two-beam interferometers have one or more beam splitters in some form or other. Accordingly we need to

understand the specific roles it play while interacting with electromagnetic fields incident on it from opposite
directions. Let us consider the Fig.1(a) where two well defined beams, which are coherent to each other, are
intersecting in free space (ignoring the photographic plate in their junction for a moment). Neither of the beams will
experience any change in their spatial energy distributions in the absence of any photo-refractive material. Both
classical and quantum physics accept that EM fields do not operate on each other in the absence of interacting 
material medium. But when a photo detector array or a photographic plate is inserted within the volume of 
superposition of the well defined beams, one can register the fringes parallel to the bisector of the angle between the
beams. One should appreciate that the beams themselves do not re-distribute their energy spatially and re-constitute
themselves to the original form before emerging out of the volume of superposition. Light beams carry energy at the
uniform speed as per the Poynting vector. The local detecting material particles (detecting dipoles) attempt to
respond to all the fields simultaneously present on it when allowed by quantum mechanical rules. The regions where
the two E-vectors try to induce undulations in the opposite directions, the dipoles fail to get excited and the region
registers a dark spot (fringe); it is not because the E-field energy did not pass through that region [12, 4b].
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Beam 2
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Reflection
Reflection
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Tranmission

Figure 1. Appreciating non-interference of light in the absence of interacting material medium. In (a) we see two well defined
beams cross each other without any mutual influence until we put a photographic plate or a photo detector array when we observe
spatial fringes. (b) shows that a dielectric boundary can re-direct the energy of one beam into the other. Under right condition of 
real physical superposition of two beams from opposite directions, the beam splitter can become a 100% transmitter or a 100%
reflector provided the Poynting vectors for the reflected and transited beam pairs are perfectly co-linear. (c) shows the situation
when the Poynting vectors make an angle with each other. Then the beam splitter cannot impose any superposition effects
directly on the beam energy. The two tilted wave fronts propagate out without influencing each other unless one inserts a detector
array within the superposed beams that reveals spatial fringes, as in (a).

Let us now insert a passive dielectric boundary, like a common beam splitter, within the volume of
superposition as shown in Fig.1(b). All of our practical interferometers have one or more beam splitters that help
divide the incident beam(s) and recombine them to produce the superposition effects. Let us review the process
according to classical physics. We assume that the two beams have been produced from the same single frequency
laser but with a relative delay of between them. When the Poynting vectors are perfectly collinear, the energy of
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the beams can be redirected by this passive beam splitter either partially or completely depending upon the strengths
of the incident amplitudes, the phase shift between the “external” and the “internal” reflections [11] and the
relative Propagational phase delays. First we are considering the case of co-linear Poynting vectors. The right-going
and down-going amplitudes are given by Eq.1. Just to appreciate the role of the dielectric boundary, we are
considering the incidence of two light pulses of same frequency and very long duration (effectively CW) of 
amplitudes . We are also assuming that both the polarizations are parallel to each other and perpendicular
to the plane of incidence to avo n dependence of r and t.  The corresponding transmitted and reflected
amplitudes are designated by . The vector symbol

1anda a2

id polarizatio

2d1andd d has been used to underscore the role of the material

dipoles, which is equ n-absorbing medium. The general case for pulsed light can be taken care of

by making  time dependent:

al to within a noa

1 1 2 2( - )and ( - )d t t d t t
1 2

1 2

2 ( ) 2 ( )
down 1 2

2 ( ) 2 ( )
right 1 2

( , , ) . . . .

( , , ) . . . .

i t t i t t

i t t i t ti

d t d r e d t e

d t d t e d re e
(1)

The corresponding intensities are:
2 2 2 2 2

down down 1 2 1 2

2 2 2 2 2
right right 1 2 1 2

( , ) 2 cos 2

( , ) 2 cos 2

I d d r d t d d tr

I d d t d r d d tr
(2)

And the general conservation of intensity (energy) can be easily found from the Eq.2:
2 2 2

total right down 1 2 1 2( ) ( ) 2I I I d T R d T R d d  (3)
One can now appreciate the possibility of converting a glass plate or a 50% beam splitter into a 100% reflector or 
transmitter by manipulating the reflectivity and/or the two amplitudes. Let us consider the particular case when all
the energy is directed to the lower beam, “robbing” from the right beam. We need the incident amplitudes to be
equal and also . Then,1 2d d d 2 2 0.5R r T t

2 2
down

2 2
right

( , ) ( ) 2

( , ) ( ) 0

2I d t r d

I d t r
(4)

Mathematically these are trivial relations from undergraduate optics. But, the subtle point that are intended here are 
as follows. The energy conservations in Eqns.3 and 4 are preserved only because of the phase shift (Eq.1)
introduced by the “external reflection”. The 100% energy re-direction of Eq.4 is also a byproduct of this phase
shift. But the most important point is that since light does not interfere with light, the role of the dipoles of the beam
splitter (albeit passive) is physically undeniable. If we block off, say, the Beam 2 [Fig.1(b)], then the energy of the
Beam1 will be simply split according to traditional beam splitter rule into right-going and down-going

and the corresponding re-radiated amplitudes will be

2
1d T

2
1d R 1d T and 1d R . If we now suddenly and very briefly

open the shutter from the Beam2 again under the conditions of Eq.4, we will be able to turn-off the right-going beam
briefly while all the energy will be sent along the down-going beam. It is obvious that the dipoles of the passive
beam splitter collectively participate in re-directing and re-radiating the field energy based on the phase conditions
and the Poynting vectors of the incident beams. Classical physics has been fully aware of this through the Maxwell’s
equations [12]. The simultaneous presence of real EM field from both the directions on the beam splitter boundary is 
essential to generate the energy re-direction capability of a passive dielectric boundary (for the “interference” effects 
to become manifest). That even (non-absorbing) passive material dipoles actually dictates re-radiation of EM field is
well known in classical physics from the explanation for the Brewster angle. At this angle ( tan B n ), the
reflection of a beam becomes zero when the incident state of polarization is parallel to the plane of incidence
because the E-vector induced undulation inside the medium (refracted direction) becomes parallel to the direction of 
reflection and dipoles cannot radiate along its axis of undulation [11].

When the Poynting vectors of the transmitted and reflected beam pairs are not co-linear, the beam splitter will
simply produce two pairs of four independent beams with a finite tilt angle between them as shown in Fig.1c. As
before, the strengths of the beams will be dictated by the same amplitude transmittance T and reflectance R of the
beam splitter, but the beams’ energy transmittance and reflectance will not be modified by this dielectric boundary
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N>
N

N

[11]. However, detector arrays in both directions will register spatially distributed fringes as long as the tilted but
finite size beams remain physically overlapped. The down-going beam pair will have amplitudes ( 1d R , 2d T )

and the right going pairs will be ( 1d T , 2d R ). The sum total energy of the four beams, of course, is conserved

as since .2 2
1 2( )d d 1T R

M 1

M 2

BS1

BS2

Pulse
Input

22 ( ). . i t tit re e

12 ( ). . i t tire t e
12 ( ). . i t tire r e

22 ( ). . i t tt t e

Figure2.  A Mach-Zehnder
interferometer (MZ) consists of two
mirrors (M1 & M2)  and two beam
splitters (BS1 & BS2). The beam splitters
introduce  phase shift at all “external”
reflections. This is critical to energy
conservation in re-directing energy from 
one beam to the other by the beam 
splitter’s boundary molecules.

2.2. Mach-Zehnder Interferometer

Let us now introduce an identical pair of such beam splitters in the popular Mach-Zehnder interferometer (MZ) 
as shown in Fig.2. We will now consider an input pulse ( ) exp[ 2 ]a t i t of width t . The down-going and the
right-going amplitudes are given by:

1 2

1

1

2 ( ) 2 ( )2
down 1 2

2 ( ) 2
1 2

2 ( ) 2
right 1 2 1 2

( , , ) ( ). . ( )

[ ( ) ( ) ],

( , , ) [ ( ) ( ) ];  where, ( )

i t t i t ti

i t t i i

i t t i i

d t d t t re re d t t t e

e Rd t t Td t t e

d t e tr d t t d t t e t t

(5)

Again, the re-radiated field amplitudes are denoted by to underscore the role of the collective dipole undulations
of the beam splitter. Then the re-radiated time varying intensities are: 

d

2 2 2 2 2
down down 1 2 1 2

2 2 2
right right 1 2 1 2

( , , ) [ ( ) ( ) 2 ( ) ( )cos 2 ]

( , , ) [ ( ) ( ) 2 ( ) ( ) cos 2 ]

I t d R d t t T d t t RTd t t d t t

I t d TR d t t d t t d t t d t t
(6)

If we now use an energy integrating detector, the total recorded energy in the two directions will be:
2 2 2

0
2

0

( , ) [ ( )2 cos 2 ]

( , ) 2 [1 ( ) cos 2 ]

T t

down down pls BS

T t

right right pls BS

E I dt E T R TR

E I dt TRE
(7)

Since the dipole undulation follows the same frequency (some times with phase shifts), the normalized mathematical
structure of the autocorrelation function of the EM fields within the material medium ( )BS and in free space

( )field are identical, as indicated below:
2 2 2

1 20 0
2 2

0

( ) ( ) ( ) ( ) ( )

( )

T t T t

BS field

T t

pls

d t t d t t dt d t dt

E a t dt
 (8)

One can demonstrate the conservation of energy for all values of , using ( )T R 1:
2

total ( , ) ( , ) ( )down right pls plsE E E E T R E (9)
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Again, the key point to appreciate is that the E-fields must be present simultaneously on the beam splitter boundary
from both the sides of the out put beam splitter of MZ for the superposition effect to physically materialize. We have
also added a subscript BS to the normalized autocorrelation function ( )BS to underscore that it represents the
behavior of the material undulations of the beam splitter dipoles induced by the EM fields rather than correlation of
the pure free-space EM fields by themselves. This definition of ( )BS automatically assures that orthogonally
polarized light cannot produce superposition effects because their dot product makes the cross-term (superposition
term) of Eqns.6 & 7 become zero. The physical implication is that the same set of material dipoles cannot undulate
in two orthogonal directions at the same time. We do not need to use an in-congruent statement like “orthogonally
polarized light do not interfere” because light does not interfere anyway. Note also that if we set 2 t , then 

( ) 0BS and again cross-term drop; but this time because the overlap product of 1( ) (d t t d t t2 ) is zero for 
lack of overlap. While this situation can be “explained away” by saying that the “coherence length” of the pulse is 
shorter than the relative path delay, a more direct explanation is that the “superposition effect” is non-existent
simply because physically the two pulses were not simultaneously acting on the molecules of the beam splitter 
boundary from the two sides; there were no real physical superposition of the two pulses. When t , or when

0 , ( ) 1BS , then it is possible to re-direct most of the energies of the two pulses coming from the two 

directions into one, which can be derived from Eq.7 by setting a value for such that 1
2,  or [ ]n n , n being

an integer. Let us choose the case of 1
2[ ]n :

2 2

2

( , ) 2 [ ]

( , ) 2 [1 1.1] 0
down pls pls

right pls

E R E T R

E R E

E
(10)

Proper co-linearity of the Poynting vectors is essential for the Eqns. 10 to hold as discussed in section 2.1. When the
angle between the Poynting vectors is non-zero, one generates non-interfering but superposed beams that will
generate spatial fringes if only a detector array is placed after the beam splitter.

We will now consider the case of a low photo electron counting situation by severely reducing the input
intensity under the condition of co-linear Poynting vectors. Let us assume that (i) the input pulse is a rectangle of
width t , (ii) the relative delay between the two MZ arms is / 2t  giving us ( ) 0.5BS such that n ,

an integer implying maximum energy re-direction by the beam splitter and  (iii) T R 0.5 . Under these specific
assumptions the down-going and right-going energies can be derived from Eq.7:

( / 2) 0.25 ; ( / 2) 0.75down pls right plsE t E E t E  (11)

Now consider the case where the total energy of the input pulse has been reduced to a value that is equivalent to a
total of n-photo electron emission. Then the integrating detector on the right output of the MZ should register a total
of 0.75n counts and that on the downward beam will register 0.25n counts, as per Eq.11 assuming a lossless MZ 
system. But if we use a pair of fast pico second detectors to be able to follow the temporal evolution of the
transmitted nano second pulses generated by the MZ system [Eq.6], we should be able to measure the following

t

t

t

(a)

(b)

(c)

t
/ 2t Figure 3. Two different types of out put pulses from an MZ 

due to a single incident rectangular pulse. (a) shows the
physical superposition of the two  pulses on BS2 of Fig.2 
from two opposite sides. (b) shows output at in-phase
condition with more energy in the middle of the stretched
pulse. (c) shows the output for out-of-phase condition and it
appears as two separate pulses with a “null” in the middle.  If 
photons are indivisible packets of energy and the input pulse 
contained only one photon, then we loose all these elegant
time evolving superposition effects that are predicted by
semi-classical model and can be validated when the pulse
contains a very large number of photons.
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interesting effects [Fig.3]. (i) The output pulse duration has been stretched from t by the MZ to (1.5 )t . (ii) The
RHS detector receives photons during the entire period of (1.5 )t , but its count rate surges up during the
central ( / 2)t period, while (iii) the detector on downward output will experience zero photo count during the
same central ( / 2)t period. Classical optics does not have any problem explaining any of these variations in the
rate of photo electron counts. Let us now reduce the energy of the input pulse equivalent to only one single photon
h with the help of some rigorous detection system placed before the input to the MZ. What would we observe
under this situation? Combining the prevailing notion that photons are indivisible energy packets (“it goes only one
way”) with Panarella’s experimental conclusions [6] that a minimum of four photons are required to create
superposition effects (in our case, on the MZ output beam splitter), we should not be able register any of the
classical prediction of time dependent intensity variations given by Eq.6 and shown in Fig.3. If we now increase the
energy of the input pulse equivalent to, say, 5 photo counts, will we be able to validate the photo count distribution
predicted by Fig.3? We, of course, believe that photons are divisible and diffractable wave packets as they propagate
and evolve. They can collectively share their energy to an atom or a molecule when superposed on them and provide
the required total amount of energy for the quantum transition E h as long as all the wave packets have the
same carrier frequency [5]. Based on Panarella’s observation [6], we want to underscore that a simple slow down
of the rate of photo electron emission to n-electrons per second should not be interpreted as the conclusive evidence
that the actual EM field constitutes the propagation of exactly (n. h ) photons per second.

2.3. Michelson’s Fourier transform spectrometer

   Michelson’s Fourier transform spectrometer (FTS) very elegantly creates delayed beams with the help of a
single beam splitter and a pair of mirrors, one of which can be continuously moved to introduce variable delay
between the two interfering beams [13]. As for the case of MZ, FTS can also be set to produce spatial fringe mode
with appropriate tilt in the mirrors by making a small angle between the Poynting vectors of the two superposed
beams. This way the total energy is split between returning and outgoing beams equally. The classic “etendue-
advantage” (light gathering power) [14] is derived when the Poynting vectors are perfectly co-linear as explained
earlier. The interferometer sketch is shown in Fig.4.

22 ( ). . i t tr r e

12 ( ). . i t tt t e

22 ( ). . i t tr t e

M 1

M 2

12 ( ). . i t tit re e

BS
Pulse
Input

Figure 4. The role of a dielectric beam splitter (BS)
in a Michelson interferometer, which replicates one
incident pulse into two with a controllable delay 
with the aid of two more mirrors, M1 & M2. The
phase shift  for “external” reflection is critical to
conserve energy when two beams are superposed
from the opposite directions. The role of the
molecules of the dielectric boundary is to re-direct
energy from one beam to the other when the beam
Poynting vectors are collinear.

The downward beams are the useful beams for this interferometer and the right-going beam is a system induced
waste. As before, the down-going and the right-going re-radiated amplitudes by the beam splitter are given by:
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1 2

1

1 2

2 ( ) 2 ( )
1 2

2 ( ) 2
1 2

2 ( ) 2 ( )
1 2

( , , ) ( ). . . ( ). . .

[ ( ) ( ) ]

( , , ) ( ). . . ( ). . .

i t t i t ti
down

i t t i i

i t t i t t
right

d t d t t t re e d t t r t e

tre d t t d t t e

d t d t t t t e d t t r r e

12 ( ) 2
1 2 1[ ( ) ( ) ];   where ( - ).i t t ie Td t t Rd t t e t t2

 (12)

Then the re-radiated time varying intensities are: 
2 2 2

down down 1 2 1 2

2 2 2 2 2
right right 1 2 1 2

( , , ) [ ( ) ( ) 2 ( ) ( ) cos 2 ]

( , , ) ( ) ( ) 2 ( ) ( )cos 2 ]

I t d TR d t t d t t d t t d t t

I t d T d t t R d t t TRd t t d t t
 (13)

As before, energy integrating detectors will register the following total energies in the two directions:
2

0
2 2 2

0

( , ) 2 [1 ( )cos 2 ]

( , ) [ 2 ( ) cos 2 ]

T t

down down pls BS

T t

right right pls BS

E I dt TRE

E I dt E T R TR
  (14)

As before, the pulse autocorrelation ( )BS , as experienced by the beam splitter medium, and the input pulse

energy plsE , are given by the pair of Eq.8. The conservation of energy is preserved since :1T R
2 2 2[ 2 ] [ ]total down right pls pls plsE E E E T R TR E T R E   (15)

Let us now discuss the situation when the Poynting vectors are not co-linear for the downward and the right-
going beam pairs. The emergent plane parallel beams are now at an angle with each other as depicted in Fig.1c.
Since the beam splitter is no longer introducing variable energy re-direction with (we are not moving one of the
mirrors parallel to itself), the spatially distributed “interference” fringes will become visible only when we insert a
detector array within the volume of the superposed outgoing beams.  We are now considering only the downward
pair of beams. The variation of the sum of the dipolar amplitudes as would be experienced by a detector array along
the spatial X-axis is still given by an equation similar to that in Eq.11, but we should acknowledge that the dipole
stimulation of the detector that precedes energy absorption is given by the linear polarizability 

relation :

( )d t

1( ) ( )d t a t
12 ( ) 2

1 2( , , ) [ ( ) ( ) ]i t t i
xd t tre d t t d t t e (16)

/ ( tan ) / ;  small.c x c (17)

The suffix x has been added to to underscore that we are now dealing with spatial fringes as registered by the
detector array. The time varying intensity at different spatial points is now given by:

xd

2 2 2
x x 1 2 1 2( , , ) [ ( ) ( ) 2 ( ) ( ) cos 2 ]I t a TR d t t d t t d t t d t t  (18)

The time integrated fringe pattern and the detector autocorrelation functions are:
2

det0
( , ) 2 [1 ( ) cos 2 ]

T t

x down plsF I dt TRE  (19)

2 2 2 2
det 1 1 1 2 10 0

( ) ( ) ( ) ( ) ( )
T t T t

fielda t t a t t dt a t dt  (20)

Notice again the identical mathematical expression for det ( ) and ( )field . Michelson’s classic visibility

function V is the autocorrelation of the pulse, derived from Eq.18:

,max ,min ,max ,min det( , ) ( ) /( ) ( )x x x xV E E E E (21)

We have kept 1 explicitly in Eq.20 to underscore the physically different processes that are giving rise to the time
integrated “interference” terms under different conditions of co-linear and non-co-linear Poynting vectors for the
superposed beams. The detectors can absorb energy whether the Poynting vectors of the superposed beams are at an
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angle or co-linear, but the passive beam splitter cannot redirect energy unless the Poynting vectors are co-linear. We
have neglected the effects of higher order polarizability assuming that they are very weak, which may not
be true for all possible detecting molecules.

( ) ( )n
n a t

For spectrometric analysis, it is customary to extract the oscillatory part of the fringe data from the time
integrated fringe pattern of Eq.19 [13, 14, 11c]:

osc det( , ) ( ) cos 2 ;  2 plsF C C TRE (22)

If max max / 2c t [see Fig.1c?] then the interferogram would record complete fringe information required by

Eq.20 [see Fig.5]. The carrier frequency of this ideal single pulse can be determined by measuring max and

counting the total number of fringes max N .
Let us now consider the case of light coming from an atomic discharge lamp, say Cd-red line, as it is spectrally

“single line” [13]. Let us assume that all the atoms produce identical and approximately same shaped pulses
( ) exp[ 2 ]a t i t but their carrier frequencies are broadened by the Doppler shift due to Maxwellian velocity

Figure 5.  A pictorial explanation of the degrading fringe 
visibility due to overlap of unequal amplitudes of the
superposed pulses [15d]. One should not be interpret this
degradation as due the presence of different optical 
frequencies given by the square modulus of the Fourier 
transform of the incident pulse amplitude. The amplitude 
envelope of the pulse is shown to be a Gaussian. The
dense “hash” represents the rapid spatial variation of the 
fringes represented by Eq.18, and the envelope represents
the autocorrelation function of Eq.20 registered by the
detector array.

distribution. We assume that ( )D is the spectral intensity distribution function due to this Doppler broadening. Let
us now ask the question: Is it possible to determine the shape of the wave packet a t , the photons that atoms emit,
by classical formulation of spectroscopy? Since our key premise is non-interference of light beams, all these atomic
pulse will create their own intensity fringes without mutual “interference”. Mathematically speaking, there are no
superposition cross-terms between the different frequencies. The resultant intensity fringe function can be derived
by integrating Eq.18 for all

( )

( )D . Alternately, the corresponding oscillatory component of the time integrated
fringes can be derived by integration Eq.21 for all ( )D :

max

min
, arg det det( , ) ( ) ( ) cos 2  ( ) ( )osc disch e v

F C D d C D (23)

Now we can explore the possibility of determining the shape of the wave packets emitted by atoms by spontaneous
emission in a discharge lamp:

2 2 2
1 2 det , arg0 0

( ) ( ) ( ) ( ) ( , ) / ( )
T t T t

osc disch ea t t a t t dt a t dt F CD (24)

Eq.23 clearly opens up the possibility of determining , the envelope of a spontaneously emitted photon, since( )a t

, arg ( , )osc disch eF can be extracted from the recorded fringes, C represents known parameters of the interferometer

and ( )D can be analytically computed since ( )D has been derived analytically and also validated by various other
laboratory methods.  To our knowledge, the above prescription for deriving the shape of the wave packet for
spontaneously emitted photon is new.

It is worth noting that when the incident beam contains more than one frequency and the optical set up is
arranged for making the Poynting vectors co-linear and co-directional for each pair of the beams generated by the
beam splitter, it re-directs the energy corresponding to each frequency separately. There is no cross-talk or 
superposition terms between different frequencies. Otherwise, Fourier transform spectroscopy would have never
worked. In fact, Michelson’s FTS is the key experimental support behind the concept of “non-interference” or
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“incoherence” of different frequencies. But, Forrester et al [16] demonstrated that beat frequencies due to the
superposition of light beams containing different frequencies are detectable with fast electronics and photo
conductive detectors. This paradox is resolved with our hypothesis that superposition effects are always displayed
by material dipoles whenever their intrinsic quantum properties allow them to simultaneously respond to all the
superposed fields. Light beams by themselves never interact with each other. In other words, “non-interference” of
light is the general behavior of light under all conditions. It is easy to appreciate that dipoles of photo conductive
detectors with broad valance and conduction bands, can simultaneously respond to multiple frequencies allowed by
the band-gap and hence undergo time varying excitation and the rate of transfer of electrons to the conduction band
becomes oscillatory, which is the beat frequency [17]. Then we are also forced to conclude that collectively the
dipoles of a dielectric boundary are capable of re-directing the energies of beams that are incident co-linearly from 
the opposite directions, but only for the same frequency E-fields. The stimulations due to different frequencies
propagate un-perturbed by each other just as the beams due to same frequency but whose Poynting vectors are non-
co-linear.

3. MULTIPLE-BEAM SUPERPOSITIONS

Gratings and Fabry-Perot interferometers are the two generic examples for which one can make analysis of 
multiple-beam superposition by using our method of real time propagation of a pulses replicated by these
instruments [15]. We would like to briefly summarize the case of an N-slit grating and express its “spectral fringe”
formation in terms of summation of a number of two-beam autocorrelation functions, which represent all possible
combination of two-beam superposition out of all the N-beams produced by the N-slit grating.  Fig.6 gives the
simple physical picture for grating as a pulse replicator – we see N pulses delayed by the periodic step delay ,
where 0 N is defined as the spectrometer time constant [15a]. When the appropriate optics helps them get 
superposed on a detector array, we get the traditional grating fringes.

a (t) Figure 6. A grating replicates an incident pulse
into N new equal amplitude pulses with a
periodic delay . When this train of pulses are
superposed on a detector array, one can register
the grating fringes. The out put pulse from all 
multiple beam spectrometers are stretched and
have a characteristic time constant N .

The train of out put amplitudes is denoted by:
1

2 ( )

0
( , ) (1/ ) ( )

N
i t n

out
n

d t N d t n e (25)

The time varying intensity represents a stretched pulse by approximately an amount of 0 N :
12 2

pls 2 2
0

1 1( , , ) ( ) ( ) 2 ( ) ( ) cos[2 ( ) ]
N

out
n m n m

I t d t a t n d t n d t m n m
N N

(26)

Then the time integrated fringe intensity is given by:
1

det2
1

1 2( , ) ( ) ( ) cos[2 ]
N

pls
p

I N p p p
N N

(27)

Where the auto correlation function is defined as: 

det 2

( ) ( )
( ) ( ) ( )

( )nm

d t n d t m dt
p n m

d t dt
(28)

If the incident pulse is longer than 0 N , then

0
det. ( )

t N
Lt p 1 (29)

ei2 t
t

0 N

t
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and we can recover the traditional CW grating formula without even the need for real CW light:

0

21

2 2
1

1 2 1 sin. ( , ) ( , ) ( ) cos[2 ]
sin

N

pls cw
t N

p

N
Lt I I N p p

N N N 2  (30)

The strength of our approach is that we have started with a generalized pulse and derived the expression for the
grating spectral fringes [Eq.26] in terms of a series of two-beam autocorrelation functions as would be experienced
by a detector array. Further, in the limit of long pulse length, 0t>R / mN / Nc c , where R is the
classical resolving power of the grating, we recover the traditional CW formulation as a special case. The details of
the evolution of these concepts and derivations for both gratings and a Fabry-Perots can be found in ref. 15.

4. CONCLUSIONS

We have underscored the need to re-visit the phenomenon of “interference” in view of “non-interference of 
light” in general, and not just for orthogonal polarizations and different frequencies. Since superposition effects are 
displayed by the summing capability of material dipoles of the multiple superposed fields on them, we have
developed the generic expressions for two-beam and multiple-beam superposition effects in terms of autocorrelation
functions for the relevant material dipole under the illumination by a generic light pulse. The time-domain and 
material-dipole driven approach forces us to consider the roles of different physical properties of different materials
in studying superposition effects, which have been missing in the traditional coherence theory. In the process we
have found that the current model of interference by single photon with its indivisible packet of energy does not
conform to the required reality of the simultaneous superposition of multiple signals on the same detecting molecule.
We have also found that the acceptance of the semi-classical model of atomic emissions as classical wave packets
allows one to extract the shape of the envelope of this wave packet by inverting the corresponding autocorrelation
function which is easily measurable by a two-beam interferometer. Our time-domain approach for a grating
spectrometer reveals that we have obtained a very generalized expression for the spectral fringes due to a short pulse
that naturally evolves into the traditional CW expression when the pulse length simply exceeds the spectrometer
time constant, a property that classical spectrometry have not yet formally recognized.
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