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ABSTRACT

This paper extends and generalizes the principle of Non-Interference of Light (NIL) to diffracted secondary
wavelets. In a previous series of papers,1–14 we have demonstrated the NIL principle for well defined superposed
light beams, which experience negligible diffracted spreading within the interferometers being used. NIL is consis-
tent with quantum physics where emitted photons from material dipoles are considered non-interacting Bosons.
Our NIL principle describes the formation of fringes (energy re-distribution) as patterned energy absorptions
or scattering by “local” material dipoles proportional to the square modulus of the sum of all the superposed
stimulating fields experienced by the dipoles.

Keywords: Non-interference of light or NIL; non-interference of secondary wavelets, non-interacting photons
in diffraction; non-interacting photons in interference;

1. INTRODUCTION

In classical physics, interference phenomenon, with superposition of well defined optical beams (suffering neg-
ligible diffractive spreading within the interferometer), is mathematically represented by directly summing the
electromagnetic fields to derive the resultant energy distribution (fringe pattern). The implied hypothesis is that
the light beams, by themselves, interact with each other to create a new energy distribution. However, quantum
physics defines light beams consist of photons, which are Bosons, and they do not interact with each other. They
can occupy the same physical space when a light beam is tightly focused, or different beams cross each other or
co-propagate through the same space. We agree with this position of quantum physics and hence consider non-
interference of light beams (NIL) is a fundamental property of light beams1–14 . Quantum physics is then forced
to assume, as per Dirac, “a photon can interfere only with itself” to create fringes (redistribution of energy). We
disagree with this hypothesis since in the model of quantum physics, photons being stable elementary particles,
cannot make themselves “appear or disappear” without some physical interaction with themselves, or with some
other materials, to create fringes. Our generalized hypothesis is that superposition effects can become manifest
only as some measurable physical transformation in some detecting material dipoles. The transformations re-
quire energy, which is provided by all the superposed EM fields through simultaneous dipolar stimulations. The
expression for the energy transfer I(x) is given by the QM prescription, square modulus of the sum of all the
dipolar complex amplitude stimulations(1)χanEn(x), due to all the superposed EM waves; where an are the real
amplitudes of the individual EM fields, En(x) are their sinusoidal complex undulations at the x-location and
(1)χ is the polarizability of the material dipoles containing their quantum properties:

I(x) =(1) χ2 |a1E1(x) + a2E2(x)|2 =
∣
∣
∣
(1)χa1E1(x) +(1) χa2E2(x)

∣
∣
∣

2

. (1)

Thus, the superposition phenomenon, being a physical energy exchange effect, must be represented by the
summation of the simultaneous dipolar stimulations physically induced by all the simultaneously present fields.
Notice that when (1)χ can be assumed to be a constant, in Eq. 1, using a mathematical rule, it can be taken
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out of the square modulus sign. Then the remaining terms inside the square modulus sign appear as if one
can literally sum the EM fields to produce the fringes (energy re-distribution); as if the role of (1)χ2 is no more
than a passive detector constant. This is a major mistake of classical physics. The same dipole, or the dipole
complex, can sum all the stimulations simultaneously induced by multiple EM fields. But the EM fields cannot
sum themselves. There is no interference of light. It is not just a mere semantics. The consequences are deep
and extensive in all branches of optical physics wherever we measure some effects due to superposition of more
than one EM fields4–14 .

Huygens-Fresnel model (including its Rayleigh-Sommerfeld modifications15) of diffraction works remarkably
well, from macro optical phenomena (like imaging by Hubble telescope) to nano-photonic phenomena (like
nano optical wave guides and plasmonic photonic manipulation of EM waves). The core assumption behind
this diffraction model is fundamentally similar to that for the classical interference phenomenon - (diffracted)
secondary wavelets sum themselves to re-arrange their energy distribution, generating the new diffracted intensity
distribution. The objective of this paper is to extend our NIL hypothesis to diffraction phenomenon using the
concept behind Eq. 1. We demonstrate that the registered rearrangement of diffracted intensity distribution,
as in classical interference effects, is also a result of interactions between “detecting” material dipoles and the
multitudes of diffracted wavelets. In the nanometer domains where the diffracted secondary wavelets and the
perturbing material dipoles are inseparable, one can obtain new energy distributions, as in plasmonic photonics,
which again conforms to our general hypothesis that only material dipoles can facilitate the creation of new energy
distribution and hence facilitate the generation of new effective wave front immediately outside the plasmonic
material medium.

This paper is organized as follows. Section 2 provides the supporting evidence for the NIL hypothesis. The
hypothesis is extended to diffracted wavelets in section 3. The formulation and calculation of near field diffraction
is developed in section 4. The conclusion is summarized section 5.

2. BRIEF REVIEW OF NON-INTERFERENCE OF LIGHT (NIL)

Beam 1

Beam 2

2D

1D

3D

4D

Figure 1. Non-interaction of laser beams cross through.

When two light beams pass through each other, they keep propagating unperturbed in their beam energy
distributions. If two projectors project their images on two different screens while the path of the light beams
cross through each other, it is obvious that the images on the screens remain unaffected. There is no spatial
or temporal scintillations in the intensity patterns imaged by our retina even though the received light beam
has to cross through innumerable other beams carrying different sceneries from different directions. WDM
technology sends a good number of independent laser beams, each carrying separate data, having different
wavelengths (frequencies) through many thousands of kilometers of single mode glass fibers. These beams can
be easily de-multiplexed without loss of any data. WDM beams do not experience any heterodyne mixing.
The data is never destroyed as heterodyne noise inside the single mode fiber. The hypothesis of expanding
universe is reproducibly validated through the measurement of the Doppler shifts of characteristic line spectra
from different stars at different distances. Many of these light beams have been traveling for billions of light
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years while crossing through trillions of other light beams produced by all other stars. Yet, each beam preserves
its unique distant-dependant Doppler shift characteristics. All these cases validate our NIL-hypothesis. It is
obvious that light beams co-propagate or cross through each other unperturbed. So, in spite of mathematical
correctness of time-frequency Fourier theorem, and in spite of acceptance of linear summation of sinusoids by
Maxwell’s wave equation, light beams cannot be summed directly to re-group beam energy since they do not
interact with each other. Weakening a light beam to a very slow rate of photoelectron release cannot create a
novel interference phenomenon! Superposition effects are always displayed through interactions between light
and material dipoles! In other words, the non-interaction property of light is one of the key properties of light
that makes it the most useful tool to gather and analyze information about the material world!

2.1 Non-interaction of laser beams

We propose an experiment that can be carried out in any modest laboratory to prove that crossing laser beams,
as shown in Fig. 1, do not interact with each other. The crossing beams are collimated Gaussian beams of finite
spatial size as depicted in the figure. D1, D2, D3, D4 are detectors. Detector D1 registers only the effect of
beam-1 and remains unperturbed whether the beam-2 is on or off. In the same way, D2 registers only the effect
of beam-2 and remains unperturbed whether the beam-1 is on or off. D4 is out of the region of either beam
so D4 does not register anything. Only the detector D3, placed inside the volume of superposition of the two
beams, can register the fringes due to superposition of the two beams. One can conclude from these observations
and measurements that the two crossing laser beams do not interact with each other.

2.2 Non-interaction of crossing laser beams produced by a Fresnel bi-prism

(a) (b)

(c) (d)

(e) (f)

Figure 2. Non-interaction of laser beams. We propose an experiment with a Fresnel bi-prism and a single slit to underscore
the non-interference of light beams. The two bi-prism beams will produce two independent diffraction patterns along the
directions of the respective Poynting vectors, irrespective of whether the slit is placed on a potential dark or a potential
bright fringe8 .

In Fig. 2 we propose an experiment where a Fresnel bi-prism generates two beams that cross through each
other. As per our NIL-hypothesis, the two beams will pass through each other un-perturbed as in Fig.2a; but
fringes can be observed only if one places a detector array within the volume of superposition. Fig.2b shows a
slit positioned on the location of a dark fringe. Fig.2 c and d show that if the two beams were sent separately,
one at a time, we would have registered two diffraction patterns emerging along the directions of the Poynting
vectors of the two beams, as underscored in Fig.2e. Fig.2f repeats the same concepts by dramatizing the point
that two independent diffraction pattern will emerge even if the slit were located exactly on the location of a
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potential dark fringe (if detector array was placed just before the slit). A dark fringe does not necessarily imply
the absence of light energy (or non-arrival photons). Where the two electric vectors of the two superposed beams
are 180◦ out of phase from each other, the local detecting dipoles would not be stimulated and hence they will
register a “dark fringe”. In-phase locations will register bright fringes since the two E-vector amplitudes will
jointly and strongly stimulate the detecting dipoles.

2.3 Non-interaction of crossing laser beams produced by a Mach-Zehnder

Mach-Zehnder
Interferometer
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Ground glass

Microscope
Objective
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Figure 3. Non-interference of convergent beam pair produced by a Mach-Zehnder interferometer. See text for details.

To demonstrate the non-interaction or non-interference between laser beams, we designed an experiment using
a Mach-Zehnder interferometer (MZ).16 The set-up is sketched in Fig.3 and the results are shown in Fig.3a,b,c.
The MZ interferometer was given appropriate tilts to produce a pair of converging outgoing beams, as the Fresnel
bi-prism does. A special ground glass was used which has flat surface in the front side and ground surface in the
opposite side. When the two light beams, coming out of the MZ, converges on the ground glass, a part of the
energy from both the light beams is reflected by the front flat surface and the rest pass through the ground surface
(ignoring the absorption), which gets scattered. The reflected beams from the front flat surface of the ground
glass emerge out totally unperturbed as a pair of divergent beams. As a result, there are two separated bright
spots on screen #2 (photo on Fig.3a). This means that these two beams have not experienced any interaction
with each other even though they were superposed on the same spot of the flat side of the glass plate (screen
#1) and then got reflected unperturbed by each other. The part of the energy that passes through the ground
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surface of the ground glass, hits the screen #1 and appears as a single divergent beam full of random speckle
patters due to scattering (photo on Fig.3b). When a microscope objective was placed between the ground glass
and the screen #1 to create an enlarged and sharp image of the ground surface, a clear interference fringe pattern
was observed (photo in Fig.3c). This means that the interference fringe pattern exists on the ground surface
of the ground glass. Obviously, the fringes are due to simultaneous response of the individual lumps of silica
(glass) molecules to the two superposed beams. The physical locations where the small silica lumps experienced
two electric vectors stimulating them out-of-phase, they could not make any forward scattering, producing dark
fringes. Similarly, in-phase E-vector locations produced bright fringes. A high resolution photographic plate or
a digital camera screen (photo detector array) placed directly at the convergence plane of the two MZ-beams
would have also recorded these fringes.

3. NON-INTERACTION OF WAVELETS

Near
field Far

field

1.22 /D
D

ZEvolving near field patterns

Figure 4. Evolution of near field and far field diffraction pattern due to a small circular aperture. Note that the on-axis
near field pattern goes through a series of dark spots indicating that they are the simultaneous superposition effects of
HF wavelets on the recording Silver Bromide dipoles, rather than “interference” of light. In the far filed the relative
phase variations between the HF wavelets are so small that the recorded intensity pattern remains identical in angular
distributions [Photos taken from ref17, 18].

Huygens’ Principle states that the wavefront of a propagating wave of light at any instant conforms to the
envelope of spherical wavelets emanating from every point on the wavefront. The wavelet is more basic concept
than the light beam. It is natural to extend the hypothesis of non-interaction of light beams to non-interaction of
light wavelets. Since, even the best collimated light beams experience diffractive divergence and can be modeled
accurately by Huygens-Fresnel Integral (HFI), we are assuming that HFI does model propagation of light at all
stages of propagation. Here for example we consider the diffraction of light after a circular aperture with radius of
D. The diffraction pattern consists of a central bright spot (Airy disk) surrounded by a series of bright and dark
rings in far field. In the near field, the diffraction pattern varies with the distance from the aperture. The center
spot is not always bright, but evolves through alternate bright, dark, bright, dark patterns and so on, as shown
in Fig.4. On-axis dark and bright spots represent detector’s response at that plane as the square-modulus of the
sum of all the complex amplitudes of all the diffracted HF wavelets. So the dark spot on axis is not the absence
of energy. Far field pattern evolves with unchanging angular distribution because the relative phase difference
between the HF wavelets has become negligible along the propagation axis. This far field Bessel beam pattern
remains un-altered even when one inserts a microscopic scattering center on axis, as in trapping of particles
inside the beam.

Fig. 5 shows Talbot images in the near field domain formed due to superposition of rapidly evolving secondary
wavelets emerging from the slits of a grating. Such images are observable only after being recorded by a
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Figure 5. The optical Talbot Effect for monochromatic light. Appearance and disappearance of dark spots along any
particular forward axis is not a sign of absence of EM field energy. Detectors in those spots experience absence of
resultant E-vector stimulation. Diffracted wavelets propagate through each other unperturbed. [Adapted from Wikipedia
http://en.wikipedia.org/wiki/Talbot effect.]

photographic plate or a CCD array. Collectively, Talbot images represent an excellent example to appreciate
that secondary wavelets pass through each other without perturbing the propagating energy distribution of each
other. In Fig. 5 one can locate the exact Talbot image of the grating at a distance 2D2/λ. At the half Talbot
distance D2/λ, the grating image is inverted in its dark vs. bright position. In between these distances there is
a large number of fractional Talbot images with double, triple, etc., number of spots compared to the number
of actual slits in the grating. If one carefully observes the evolution of dark and bright spots along any forward
axis, one can appreciate that the best way to explain such a complex and orderly registration of energy variation
is due to the response of detecting dipoles in each local points. There is no operating force between EM waves
to redistribute filed energy in a rapidly changing spatial pattern as they propagate through each other.

(a) (b)

Figure 6. Intensity of light after the diffraction of the double-slit system, (a) near field, (b) far field.

The Fig. 6 shows the diffracted intensity of light (vertical scale) due to a double-slit system. We can see
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that the traditional double-slit diffraction fringe pattern can not be formed in the near field, as the separation
between the slits is too large for physical superposition (Fig. 6 a). But in far field, due to diffractive divergence,
they start overlapping and start developing traditional double-slit pattern. All these diffraction patterns are
response of the local detecting material dipoles, not rearrangement of intensities of the two light beams produced
by their superposition only.

4. TIME-DIFFRACTION

It is no doubt that the real optical signals always have finite time duration. In another word, all the optical
signals are pulsed signals of finite length. This raises the phenomenon of diffractive pulse broadening. The
Huygens-Fresnel (HF) diffraction integral can be represented as:19

U(P0) =
−i

λ

∫ ∫

Σ

U(P1)
eikr

r
cos θds, (2)

where U(P0) is the calculated sum of the field at a point P0 due to all the HF wavelets, U(P1) is the field strength
at a point P1 on the aperture, and r is the distance between P0 and P1. For a finite pulse, U(P1, t), since the
HF wavelets with different delays, could be superposed with different amplitudes, we propose that we directly
sum the delayed HF wavelets as shown in Fig. 7, showing the case for a rectangular pulse. The temporal delays
between the wavelets are now explicitly recognized via t = n(ν)r/c, where the refractive index n(ν) is introduced
to underscore that the frequency dependent dispersive delays should be considered if the diffraction is taking
place inside a homogeneous medium. One can now easily visualize that the effective measured pulse width will
be different, especially in the near field, as the location of the observation point P0 changes at any plane in the
near field. If U(P1, t) contains many actual carrier frequencies, then the Eq.3 should be integrated further over
the distribution of carrier frequencies,

U(P0, t) =
−iν

c

∫ ∫

Σ

U(P1, t)
ei2πνt

r
cos θds; t =

n(ν)r
c

. (3)

Since we can only detect intensity through the response of a detector to all the superposed HF wavelets,
technically, one must convert all the HF wavelets U(P1) into corresponding stimulation of the detecting dipole
amplitudes by multiplying them with the polarizability (1)χ, as shown in Eq.1, and then obtain the time varying
intensity I(P0, t) as. Since (1)χ is usually a constant, normalized computed value remains unchanged whether
one explicitly considers “summing the dipole undulations” (NIL-hypothesis) or “summing the EM waves” (light
interferes):

I(P0, t) =
∣
∣
∣
(1)χU(P0, t)

∣
∣
∣

2

=
∣
∣
∣
∣

−iν

c

∫ ∫

Σ

(1)χU(P1, t)
ei2πνt

r
cos θds

∣
∣
∣
∣

2

. (4)

Traditionally, we replace the time-dependent function U(P, t) by the time-independent Fourier transform of
the envelope function, which tends to work for free-space, since secondary wavelets do not “interfere” with each
other. The Fourier frequencies of the envelope function can be written as

U(P1, t) =
∫ +∞

−∞
Ũ(P1, f)ei2πftdf, (5)

where f if the Fourier frequency. And the traditional approach for the time-diffraction is to insert the Fourier
frequencies in the CW diffraction formula of Eq.2:

U(P0, t) =
−iν

c

∫ ∫

Σ

∫ +∞

−∞
Ũ(P1, f)ei2πft e

i2πνt

r
cos θdsdf. (6)

For free-space diffraction, either Eq. 3 or Eq. 6 will work. For diffraction inside a dispersive media, Eq. 3
should be used to avoid error due to material dispersion.
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When a pulse signal diffracted by a single slit with slit width of 2b, the light intensity of the point of
(ξ, z) is the superposition of the diffractive wavelets from each point of the aperture. The distance between
the point (ξ, z) on observation screen and the (x, 0) on the aperture is rx = [z2 + (ξ − x)2]1/2. The time
delayed is τ = τabs(x, ξ, z) = rx/c, and rx = [z2 + (x − ξ)2]1/2. The minimum value in the near field is
τmin = τabs(ξ, ξ, z) = z/c, the maximum value is τmax = rmax/c = [z2 + (ξ + b)2]1/2/c. τ0 = τmax − τmin is a
characteristic pulse evolving time constant. It is the diffractive pulse broadening at (ξ, z).

-b

+b

X

z

( , )z

x
xr

1t2t 0

Figure 7. The origin of the pulse stretching in the time diffraction.

For the near-field time diffraction of a single slit with the slit width of 2b, the time evolving intensity is

ip(t, ξ, z) =

∣
∣
∣
∣
∣

∫ b

−b

a(t − τ)
ei2πν(t−τ)

rx
cos θdx

∣
∣
∣
∣
∣

2

, (7)

where a(t) = −iν
c U(P1, t) assuming the intensity of each point at the single slit is identical.

The time integrated intensity is

I(ξ, z) =
∫ t2

t1

ip(t, ξ, z)dt; (t2 − t1) ≥ 2τ0. (8)

The effects of time-diffraction as differential pulse broadening at on-axis vs. off-axis points in the near field,
will be published elsewhere. Such effects will not be observable in the far-field, since the differential delays
between the secondary wavelets become negligible.

5. CONCLUSION
We have generalized the hypothesis - Non-Interference of Light (NIL) beams - to diffracted wavelets and hence to
the diffraction phenomenon. This concept is also supported by the analysis presented in a recent paper20 . Due
to propagation delays, diffracted wavelets stretch the incident pulse, generating a broader pulse at the output.
This effect will be most dominant in the near field between on-axis and off-axis points. We have presented a
simple method of formulating tine-diffraction and consequent diffractive pulse broadening. Detailed analysis will
be presented elsewhere.
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