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Characteristic fringes of a spectrometer are produced by interference of a large number of wavefronts of 
regularly increasing phase difference. This phase difference implies a temporal delay between the 
wavefronts. So, the response of such an instrument to a light pulse of very short duration may not be 
given by the conventional formula, which generally corresponds to a steady-state situation. In this paper. 
the temporal response of Fabry-Perot interferometers to pulses of light of various lengths and kinds is 
considered and inferences are drawn regarding how to estimate the pulse lengths and how to carry out 
the spectral analysis of such pulses. 

Index Headings: Interferometers; Laser. 

Spectrometers like the Fabry-Perot interferometer and 
gratings give rise to fringes by interference between a 
large number of beams with a regular phase difference 
between the consecutive beams produ<;ed by the spec­
trometer. This regular phase (path) difference implies 
a regular delay time (To) between consecutive beams. 
Thus, a spectrometer would always need a finite char­
acteristic response time (Tr =pTo) after the incidence of 
the parent wavefront in which to build up the interference 
of multiple beams to produce the characteristic fringes 
(where p is the effective number of interfering beams). 
Further, such chara~teristic fringes can be formed only , 
if the series of beams produced by the spectrometer is 
simultaneously present at the location or time of inter­
est. This implies that the incident parent wave train 
must have a temporal duration, ot~ T", to produce such 
characteristic fringes. This dynamic condition is gen­
erally met by the well-known static criterion that the 
free spectral range of the spectrometer should be larger 
than the width of the spectrum to be analyzed (this point 
will be further clarified in the following sections). Thus, 
it is important to realize that a spectrometer of response 
time T,. will not show a normal spectral response if the 
incident wave train has a temporal duration less 'than Tr • 

This point should be borne in mind, especially, in spec­
troscopy of pico- and nanosecond light pulses, where Tr 

may be of this order or larger. 

In this paper, we attempt an analysis of such situa­
tions, including some interesting cases when the inci­
dent wavefront consists of ~ pulse or a train of regular 
pulses of durations comparable to the spectrometer de­
lay time To. The Fabry-Perot interferometer being the 
most flexible and representative of the spectrometers, 
we shall do all the analysis with reference, to this inter­
ferometer. The next section is a brief review of the 
Fabry-Perot interferometer (FP) in order to define 
terms that we shall use. In the subsequent sections, we 
shall derive the response characteristics of FP's to a 
single pulse of light of different lengths and also to a 
sequence of regular and coherent pulses of light. 

I. FABRY-PEROT INTERFEROMETER 

Figure 1a shows the series of beams produced by mul­
tiple reflections from the incident parent beam. When 
these beams interfere they give rise to the FP fringes, 
the amplitude of which is1 

A = t TR" efn~ =T/(1-Ref~) , (1) 
n=O 

where T and R are flux transmittance and reflectance, 
respectively, and cP is the phase difference between the 
consecutive beams given by 

cp = (211'V/ c)2d cosO, (2) 

where d is the separation between the mirrors and 0 is 
the angle of incidence of the parent beam (neglecting any 
change of phase on reflection). If the parent beam is 
collimated and is normally incident (0 =0) on the FP, the 
series of multiply reflected beams interferes. We de­
scribe this situation as the FP in filter mode because 
only a narrow b<l:nd of frequencies can pass through the 
FP in this mode. If the incident beam is at an angle, the 
series of multiply reflected beams will interfere and 
form fringes at the focal plane of a lens that follows the 
FP. We describe this situation as the FP in fringe 
mode. The irradiance distribution in a fringe in either 
mode is given by the Airy curve, which is the square of 
the modulus of .Eq. (1), 

I=T/[1 +Fsin2cp/2] , 

where 

T=[T/(1-R)]2 and F=4R/(1-R)2 • 

The maximum and minimum irradiances are (see 
Fig. 1b) 

Imu =T/(1-R)2, ImiD =T/(1 +R)2 • 

(3) 

(4) 

(5) 

An important parameter of a FP is the finesse, N, which 
is directly proportional to its resolving power and is de­
fined as the ratio of the free spectral range, ACP, i. e., 
the separation between the consecutive peaks, to the 
half-width of the Airy curve, Ocp (seeFig. 1b), 

N=ACP/Ocp = (11'/2).fF =11'.fii/(1-R) , (6) 

where 

Ocp = 2(1 -R)/.fii • (7) 

The free spectral range in terms of frequency is obtained 
from Eq. (2), since Acp = 211', 

AVfsr = c/2d cosO. (8) 

Equation (1) refers to an infinite sum. But, we know 
that the amplitudes of the successive beams reduce ac-
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FIG. 1. (a) Multiple reflections in a Fabry-Perot interferom­
eter (FP) formed by two plane parallel and partially transmit­
ting mirrors of identical nature. (b) The transmission charac­
teristics of a FP, known as the Airy curve. 

cording to a geometric series. Thus, the beams, say 
after the Mth, will have negligible energy to alter ap­
preciably the effect of the first M beams. Then Eq. (3) 
can be rewritten as 

I 
11-1 2 

1= cr /[1 +F sin2<t>/2] ~ 1M = ~ TRn efn~ I (9) 

We can find by computation that wh~n the number M is of 
the order of N, the finesse, the approximation in Eq. (9) 
is quite good. As a matter of fact, when 

(10) 

111 is close to the ideal value for a wide range of values 
of R for mirrors flat to X/200 or less. 2 

We shall now define two terms that will be used in the 
following sections. If the FP is in filter mode (the in­
cident beam is collimated and normal to the FP), the 
transit time or delay time, i o, between the consecutive 
beams is 

(11) 

Because, as already mentioned, only the first M consec­
utive beams are required to produce the characteristic 
FP fringes and because M is of the order of N, the 
finesse, we define the response time of an FP as 

(12) 

When the FP is in the fringe mode, the corresponding 
terms are: 

delay time, i09 = 2d cose/e = io cose , 

response time, i1'6 =NioCOSe • 

(13a) 

(13b) 

The resolving power of a FP can be defined by use of 
either the Rayleigh criterion or the half-width criterion. 
We shall adopt the Rayleigh criterion for a FP, because 
the resolving power of gratings is also defined by use of 
this criterion; then we shall have the convenience of di­
rect comparison between the two instruments, although 
there is not an order of magnitude difference between 
the two criteria. The result is given in Born and Wolf, 4 

<R= ~/6~ =n(O. 97N) , 

where the order of interference, 

n=2dcose/~ 

(14) 

(15) 

and O. 97N is called the effective number of interfering 
beams, say, M. Then Eq. (14) can be rewritten 

<R~ nM = (M. 2dcose)/~. (16) 

Accordingly, the resolving power is the number of wave­
lengths in the path differen~e between the first and the 
last interfering wavefronts. 

Equation (16) can also be rewritten, using Eq. (11), as 

(17) 

where Mio cosB is the time difference between the first 
and the last interfering wavefronts produced by the in­
cident pulse of length 6t. Then we must have 

6t ~Moio cose = 1/6v 

or 

6v6t~ 1 . (lS) 

It is obvious that even -if we have a potentially very-high­
resolving-power FP, the effective resolution of an ex­

°tremely short pulse, 6t, will be limited to VMio cose, 
where Mis 

M ~ 6t/io cose . 

Or, conversely, the longer the pulse duration, the 
greater will be the resolution, provided that the instru­
ment has the potential for it. 

In the following sections, we shall analyze some of the 
temporal behaviors of an FP, beginning with the ideal 
situation in which the incident beam is an infinitely long 
wave train. 

II. INFINITELY WNG WAVE TRAIN 

A. Fabry-Perot interferometer in mter mode 

We consider the situation in which the parent wave 
train is collimated and incident normally and has in-
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FIG. 2 • . Multit!ldes of wave trains {A, B, C, ••• ) of decreasing 
amplitudes but of the same delay time, TO' between each other 
are formed by a pair of parallel and partially transmitting mir­
rors. TO' called the delay time (see text), is the round trip 
time for light between the two mirrors. The resultant irra­
diance at a moment nTo is T 2 11:·R"e i"-1 2• 

finitely long duration (as from a stabilized laser). Sup­
pose the wavefront of this beam is designated by A (see 
Fig. 2). Then, at the output side of the FP, we shall 
have a series of wavefronts denoted by A, B, C, .•. , the 
time delay between any pair of them being TO' With the 
origin of time at wavefront A defined as t = 0, a detector 
will detect a varying irradiance that will reach the limit­
ing value of Imax or Imill (see Fig. 3a) exponentially3 but 
following a discrete staircase wave of periodicity To. 
The over-all height of the mth step is produced by the 
first m consecutive beams, 

1

",·1 2 2 /. 

I = ~ TR" ei"-, = 'l' • 1 +F", sin (mj 2) 
'" ~ '" 1 +Fsin2(<1> 2) , 

(19) 

where 

(20a) 

and 

F",=4R"'/(1-R",)2<F. (20b) 

Equation (19) is similar to the one that describes the . 
fringes due to a Lummer-Gehrke interferometer. 4 The 
half-width of these fringes, 6<1>"" is greater than that for 
the ideal Airy curve, 6<1>, especially, when m <N and R 
is large. The exact expression is4 

--- ------- ----1------

---- --------- ---- -

(b) 

FIG. 3. (a) Temporal development of the transmission charac­
teristics of a Fabry-Perot (FP): the up-going staircase indi­
cates the development when th~ FP is in transmission mode 
and the aown-going staircase indicates the development when 
the FP is in reflection mode. TO is the FP delay time. (b) For 
the sake of comparison, the steady-state transmission charac­
teristics of an FP (the Airy curve) is shown alongside. 

FIG. 4. A Fabry-Perot interferometer in fringe mode (forma­
tion of the fringes with an incident divergent beam). 

sin2(m6<1>,,/4) - (F/2F",) sin2 (6<1>",/4) +(1/2F",) =0. (21) 

Then the finesse is given by 

N",=A<1>mi6<1>", (22) 

or, for high reflectivity4 

(23) 

The irradiance difference between any two consecutive 
steps (Fig. 3a) will be 

\/,,-1,,+11 =T211t.RQeiQ-/2 -11; ~elq- \21. (24) 

The usefulness of such a fast, exponentially rising, 
staircase wave is not apparent (for d = 1 cm, TO = 66 ps). 
Nevertheless, Fig. 3a now makes it clear why it is nec­
essary to wait for at least a time Tr =MTo after the ar­
rival of the first transmitted wavefront to register an 
interference effect (Airy curve) characteristic of an FP; 
Fig. 3b shows a normal Airy curve for convenience of 
comparison. 

B. Fabry-Perot interferometer in fringe mode 

A FP in the fringe mode is sketched in Fig. 4. To 
simplify the analysis, let us assume that we have a point 
source that illuminates the FP from a distance such that 
it is at the focal point of the lens behind the FP that 
focuses the fringes in its focal plane. This condition im­
plies that the first transmitted wavefront from the di­
vergent beam will be collimated by the lens and hence ar­
rive at the entire fringe plane simultaneously. The set 
of rays that forms the nth fringe at an angle (J will have a 
time delay of To cos8 Eq. (13a) between any consecutive 
pair of the set. Therefore, the response time, TrS, for 
the formation of the nth fringe is MTo cos8, in contrast 
to MTo for the central fringe (8 =0). Furthermore, be­
cause 

MTo cos8 <MTo (25) 

the outermost fringe is completely formed first and the 
central fringe last. Similarly, if the incident beam is 
of finite duration, the central spot will tend to disappear 
last. Therefore, to a very fast detector, the fringes 
may appear to walk. When the point source is at a dis­
tance other than the focal length of the lens, the first 
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transmitted wavefront will be spherical, hence the dif­
ferent parts will arrive at the fringe-forming plane at 
different times. This relative time delay is to be taken 
into account to find the direction in which the fringes 
walk. 

III. A LONG PULSE OF FINITE LENGTH 

In this section, we shall find the response of an FP to 
a long rectangular pulse of light. Let us assume that the 
temporal duration of the individual pulses, ot, is long 
compared to the delay time, To, of the FP, so that mul­
tiple beams are produced for interference; 

(26) 

On the basis of the order of magnitude relation, 5 formed 
by the product of the half widths of two functions (one of 
v and the other of t) that form a Fourier-transform pair, 

(27) 

and of Eq. (11), Eq. (26) can be rewritten in terms of 
frequency, 

(28) 

where ov is the spectral width of the incident radiation. 
Thus, to have a regular interferometric response, we 
must have the dynamic condition, Eq. (26), which is 
equivalent to the well-known static condition, Eq. (28), 
that the free spectral range should be larger than the 
width of the spectrum to be analyzed. 

To return to the response of an FP to such long 
pulses, the initial development can be understood from 
Fig. 3. The transmitted irradiance follows the stair­
case wave, Eq. (19), but if 

ot=mTo (29) 

and 

(30) 

where M is the effective limiting value of the number of 
beams defined in Eq. (9), the asymptotic value corre­
sponding to the Airy curve can never be reached. The 

0 
~ C 
~ 8 

A 

4l(, 31(, 21(, 10 0 

m-4. 

FIG. 5. Of the multitudes of pulses formed by a Fabry-Perot. 
only a limited number of them can interfere when the incident 
pulse is of finite length. The upper rectangular curve indicates 
the length of the incident pulse. TO is the Fabry-Perot delay 
time. 

situation is depicted in Fig. 5, where the pulse length is 
four times the FP delay time; consequently no more than 
four consecutive reflected beams can interfere at a time. 
The extreme value of irradiance will be reached at a 
moment t=mTo s after the reception of the first trans­
mitted wavefront (A in Fig. 5). From this moment, on­
ward, the shape of the irradiance curve is given by Eq. 
(19). However, the peak irradiance will decrease 
steadily because the order of reflection of the series of 
interfering beams will increase, reducing their ampli­
tudes in geometric progression, while the number of 
beams in the series m will remain the same, implying 
that the finesse will remain constant, 6 N In • This can be 
appreciated from Eq. (19), where m is fiXed but n starts 
from values higher than zero. 

If the pulse length is such that 

(31) 

the resultant irradiance curve is given effectively by the 
ideal Airy curve, Eq. (9). Consequently, a FP cannot 
distinguish spectroscopically between pulses of duration 
MTo and infinity. If we are certain that the duration of 
the wave train is infinite (perfectly monochromatic radi­
ation), we take the Airy curve as the instrumental re­
sponse curve rather than the actual spectral distribution 
(which is a delta function). When we have a finite pulse, 
to avoid the ambiguity, we should set the FP separation 
such that the delay time, To, gives rise to an effective 
number of interfering beams, m, less than M, as in Eq. 
(30). Although m can be controlled by To, the FP has 
an uncertainty about the exact value of m because we are 
trying to analyze a spectrum of unknown duration ot [see 
Eq. (29)]. However, of (and hence ov) can be estimated 
by means of several experiments, by setting the FP for 
different known values of To. A grating would be pre­
ferable because the number of beams, m (number of 
lines in the grating), can be controlled precisely. 

To produce interference effects, according to Eq. (26) 
the pulse length ot of the light should be greater than 
the delay time, To. The pulse length should also be less 
than MTo to avoid the range of ineffectiveness (ambigu­
ity) of the FP. When the two conditions are put together, 
we get, in the time and frequency domains, 

(32a) 

and 

(32b) 

IV. A SHORT PULSE 

We shall define a short pulse as one whose temporal 
duration is shorter than the delay time of the FP, i. e. , 
when 

(33) 

Then the FP produces a chain of transmitted pulses of 
decreasing amplitude with separation TO between them. 
However, they do not overlap each other and hence pro­
duce absolutely no interference effect (see Fig. 6). 
Therefore, no spectroscopy of a pulse shorter than the 
FP delay time can be performed with an FP. For ex­
ample, spectroscopy with 0.2 ps pulse would require a 
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o 

FIG. 6. A pulse of length shorter than the Fabry-Perot delay 
time, TO' cannot produce normal interference effects, since the 
generated pulses are separated from each other. The upper 
rectangular curve indicates the length of the incident pulse. 

FP of separation d(= c'To/2), much smaller than 30 J..Lm, 
which is difficult to fabricate. Besides, the resolving 
power of the FP would be very small because it is di­
rectly proportional to the product of the finesse and the 
order of interference (2d/~). A grating would also suffer 
from the same low resolution owing to the short length 
of the pulse. However, producing multiple beams for 
interference is much easier for gratings in this domain 
of short pulses because the delay time of a grating at the 
nth diffraction order is 2n x 10-15 s at ~ = 6000 A (for a 
grating 'To =n/v and 'Tr = Nn/v, where N is the total num­
ber of slits and n is -the order of diffraction). 

In any case, for an infinitely short pulse, the con­
ventional definition indicates zero resolution, because 
no multiple-beam interference can be produced with a 
single FP or grating. This accords very well with the 
product relation of the half-widths of two functions which 
are a Fourier-transform pair, as in Eq. (27), 

ovot-1 . (34) 

In Sec. VI we shall attempt to show the difficulty of 
doing spectroscopy with extremely short pulses even 
using two FP's. 

V. SERIES OF COHERENT SHORT PULSES 

A. Fabry-Perot delay time equals pulse separation 

A regular series of coherent pulses can be obtained 
from mode-locked lasers. The exact shape of such 
pulses is determined from the number of longitudinal 
modes and their relative strengths. Here we shall con­
sider an idealized situation of rectangular pulses, as in 
previous sections. First, we shall consider the case 
where the FP delay time equals the regular pulse sepa­
ration, 

(35) 

The pulse width, ot, is assumed to be very small. The 
situation is depicted on the top line of Fig. 7. By mul­
tiple reflection, each of these pulses produces a chain 
of nonoverlapping pulses of decreasing amplitude as 
shown in Fig. 7. Because all of these pulses are co­
herent, the overlapping pulses that belong to different 
chains interfere. 

Figure 7 permits a detailed examination. The chain 
of pulses on lines 0, 1, 2, .•• are produced by the Oth, 
1st, 2nd, ... pulses, respectively, of the original in­
cident series of pulses. As a particular case, we have 
indicated the . moment 3'To with a heavy arrow at the bot­
tom of Fig. 7. All of the four pulses that fall along the 
indicated dotted vertical line interfere. In general, at 
moment m'To, the resultant irradiance is 

Im+1 = Ita TR" el"~ 12 . (36) 

Or, when m ~ M, the Eq. (36) leads to the ideal Airy 
function of Eq. (9). So, a slowly scanning FP should re­
produce the spectrum of all of the longitudinal modes of 
the original mode-locked laser pulses. Of course, each 
longitudinal mode would be widened by the instrumental 
Airy function. 

It is clear that exact matching of the FP delay time 
with the imprecisely known pulse separation, ilt, would 
be an extremely difficult operation. But if the FP is set 
for a 'To that is slightly larger than ilt, then it can be 
used in the fringe mode to find the spectrum. Suppose 
that we get a perfect matching of 

(37) 
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FIG. 7. A series of coherent short pulses of separation equal 
to the Fabry-Perot delay time, TO' can produce regular inter­
ference effects. The top row indicates the incident series of 
pulses. The following rows indicate the train of pulses pro­
duced by the Oth, 1st, 2nd, ••• incident pulses on matching 
time scales. The overlapping pulses at a particular moment 
are indicated by a heavy arrow at the bottom. The amplitudes 
and the phases of the pulses are indicated above each one. 
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2d cosOn =n,x =nc/v 

or 

TO cosOn =n/v 

or, combining the above equations, 

ill=TOCOSOn=n/v. 

(38a) 

(38b) 

(39) 

Then, only the nth order spectrum at an angle On will be 
formed as a perfect FP fringe. At an angle ()~ where 
the (n±p)th-order fringe should have formed under a 
steady-state condition, we have 

(40) 

Thus, at angle 0nu, the centers of the successive inter­
fering pulses will be advanced or retarded by (±p/v) 
seconds. Then, when the width of the rectangular pulse 
is {jt, the (n±p)th-order fringe will be formed by inter­
ference of only m wavefronts given by, 

m = (jt/(p/v) • (41) 

Consider a typical example 

{jt=5x10·13 s at v=6xl0u cis andP-10. 

Then 

m = {jtv/p =30 . 

For a high-finesse FP (N- 70), the fringes produced by 
only 30 wavefronts will be clearly detectable (N30 -30). 
Thus, from Eq. (40) along with Eq. (19) we can estimate 
the width of very sharp pulses. In fact, the narrower 
the pulse, the better will be the estimate. 

In reality, pulses are never exactly rectangular. So, 
the actual shape of the pulses will have to be taken into 
account in rigorous computation. 

B. Pulse separation is an integral multiple of the delay time 

We now consider a situation in which the coherent 
regular pulses have a separation that is an integral mul­
tiple of the FP delay time, 

I1t =qTo • (42) 

But the pulse width, 01, is still smaller than TO' The 
situation is depicted in Fig. 8, where a particular case 
of ill = 4To is shown. Now consider the moment 20To 
after the first transmitted pulse has been received (the 
heavy arrow at the bottom). Then, the interfering wave­
fronts constitute the pulses: (5-0), (4-4), (3-8), (2-12), 
(1-16), and (0-20). ·The resultant intensity is given by 

1= ! T + TRf e'u + ••• + TR20 e'20_!2 , 

where the number of overlapping wavefronts is (20/4 +1). 
Or, in general, at a moment mTcn the resultant intensity 
is given by 

(43) 

where the number of overlapping wavefronts is (m/q +1). 
After a long time, or when m ~ M, the series can be con­
sidered to be effectively infinite and then using the sim­
ilarity with Eqs. (1), (3) and (4), we can write 

where 

'l'q == r /(1 _Rq)2 < 'l' , 

Fq ==4R/(I-Rq
)2 <F , 

and the finesse 

Equation (44) clearly shows a decrease of the free 
spectral range, which is now 

(44) 

(45) 

(46) 

(47) 

I1vfsr,q = I1vfsr/q = l/qTo • (48) 

But, because the spectral width from Eq. (42) is 

I1v-l/l1t=l/qTo , (49) 

there will be no overlap of different-order spectra and 
once again the spectroscopy of such coherent pulses 
can be carried out with a suitable FP. But the widening 
of the spectra is not due to the regular Airy function, 
given by Eq. (3); rather it is due to the new function 
given by Eq. (44). 

I I I I I I~~·l 
6; 5: 4 ~ ~ I: ~ 

o ~t -::-,:--' ~:~I ~I -:---~II~III 
24 29 I~ 12. ~ 432 10 

t 
~ i 

I~ 
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12 

i II1II ~~~ 
2.0 ~ ~3210 

i 1I1II 2 
t I • 

I~ 12 ~ ~ o 

3 ...-t. ~I --,--I ~IIII 
I~ ~ 4 0 

4 ~ nIl] II 
5 ~ jrnf210 

t 
FIG. 8. A situation that is very similar to that of Fig. 7 but 
with pulse separation equal to an integral multiple of the Fabry­
Perot delay time, TO' The broken lines on the bottom two rows 
indicate the overlapping of the adjacent pulses when the width 
is larger than TO' 
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Estimation of the pulse width with an FP under these 
circumstances, by use of it in the fringe mode, can be 
attempted as we have analyzed at the end of Sec. V A, 
but the reduction of the new finesse, N(1.1 will reduce the 
accuracy of estimation compared to the previous situa­
tion. 

A slightly different situation can also be considered. 
Let the FP be in the filter mode, to avoid complications. 
Let the pulse separation be, as before, q times the de­
lay time, Eq. (42), but let the pulse width be more than 
the delay time. First, we shall consider a particular 
case, l>t=2To, but At=4To, as before. The situation can 
be realized by looking at the bottom part of Fig. 8, 
where the broken lines show the width of the pulses. 
Then the interfering wavefronts at moment 5To are, 
(5-0), (4-4, 3, 2), (3-8, 7, 6), (2-12, 11, 10), (1-16, 
15, 14), (0-20, 19, 18) instead of just (5-0), (4-4), 
(3-8), (2-12), (1-16), and (0-20), as before. 

So, we can find the resultant irradiance at the mo­
ment 5To, 

[= 1 T + TRf e'U(1 +Rf e'u + ••• +R18 en8~) 

+ TR3 e'3~(1 +Rf e'u + ••• +R18 eUU ) 

+TR2e'2~(1+Rfe'U+ ••• +R18 eUU ) 12 • 

Or, in general, when the pulse separation and width are 
given by 

At =qTo and t =5TO (50} 

(note that 5 <q is necessary for original non-overlapping 
pulses), we would find the resultant irradiance at a mo­
ment mTo, 

or, 

[= IT + T(,Rq e'q~ +R(q-l) ef(q-l,. + ••• +R(q-,) el(q-,)~) 

.x(1 +Rq e'q~ + ••• +Rq(-l> e,q(lIl-l).) 12 

1 - Rq", e,q"'fI\2 
1 -Rq e,qfl 

(51) 
This is the general expression for the instrumental func­
tion, which needs detailed computation to find the finesse 
and the nature of the curve. But, we shall consider a 
special situation in which the width of the pulse is such 
that 

(q -5) =1 . (52) 

Careful scrutiny will show that with this condition, the 
series of interfering wavefronts constitutes the regular 
FP series. - Either this physical argument or straight­
forward algebra reduces Eq. (51) to, 

(53) 

With the additional feasible assumption that (qm + 1) ~ M 
implying R(qm+l) O:t 0, we have [see Eq. (3)] 

[=7/[1 +Fsin2CP/2] • (54) 

Surprisingly, this is again the ideal Airy function, a 
situation similar to that which we have come across be­
fore in Sec. V A. Thus, with the proper matching con-

ditions given by Eqs. (50) and (52), we can again do 
spectroscopy of coherent pulses where the instrumental 
function is exactly the ideal Airy function. Such condi­
tions can also be used with the FP in fringe mode, as has 
been described at the end of Sec. VA. 

VI. A SHORT PULSE THROUGH lWO FP'S 

In Sec. IV, we considered the case of one short pulse 
or incoherent short pulses through one FP and we found 
that spectral analysis could not be done because the mul­
tiply reflected pulses do not overlap and interfere to pro­
duce the spectrum of the incident light. In this section, 
we shall attempt to see whether any interference at all 
can be generated by using two FP's instead of one. The 
top part of Fig. 9 shows a chain of nonoverlapping pulses 
generated by the first FP from the incident single pulse. 
Each of these pulses will generate a chain of pulses 
through the second FP as shown on the lower lines of 
Fig. 9. If the delay times are appropriately matched, 
we can again see interference of many wavefronts and 
hence spectroscopy should be possible. 

First, consider the situati.on when both the FP's have 
exactly the same delay time. This can also be achieved 
by using one FP, by sending the pulses back through the 
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4 

FIG. 9. The possibility of interference with a single but very 
short pulse using two identical Fabry-Perots. Top row: A 
single short pulse produces a series of DOn~verlapping pulses 
through the first Fabry-Perot (Fp). These pulses, in turn, 
pass through the second FP and produce many trains of pulses, 
which are indicated in the following rows on matched time 
scales. The heavy arrow at the bottom indicates the overlap­
ping pulses at a particular moment. The amplitude and phase of 
any pulse are obtained by multiplying the expression shown 
above it by the factor that is indicated on the extreme right of 
the corresponding row. 
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FIG. 10. A situation that is very similar to that of Fig. 9, but 
with two FabrY-Perots whose delay times are integral multi­
ples of each other (T01 =4T02)' The broken lines at the bottom 
two rows indicate the overlapping of the adjacent pulses when 
the width is larger than TO% but narrower than Tnl. 

same FP, by use of a corner cube or other suitable op­
tics (this device is often called a double-passed FP). If 
we wait until the mth pulse, produced by the first FP, 
passes through the second FP, then the resultant inten­
sity should be 

I = I T2R'" e''''- + T2R'" e''''- + ••• , {m + l)terms 12 
= (m + 1)2T21 TR'" e''''-12 • (55) 

All of the interfering pulses, being of exactly the same 
phase, no dispersion effect is produced and so no spec­
troscopy is possible. 

Let us now consider a situation in which the second FP 
has a smaller delay time than the first one, 

'T01 =QT02 • (56) 

This amounts to a situation in which we have a chain of 
coherent pulses produced by the first FP of separation 

(57) 

The~ the situation is similar to that depicted in Fig. 8, 
with the difference that the successive pulses that enter 
the second FP have amplitudes decreasing in geometric 
progression. It has been redrawn in Fig. 10. We are 

still considering very narrow pulses, such that the width 
6t < TOO' But, now we have two FP's with different­
separations and so the phase de lays cP for the first and 
CP' for the second are also different. Using Eqs. (2) 
and (11) and considering normal incidence, we have 

cP = 21TIIT01 and CP' = 21TVT02' (58) 

Then considering a particular case of 

(59) 

the interfering irradiance at a moment 5To1 (indicated by 
the heavy arrow in Fig. 10) is -

1= I T2R5eI511+R3e'~ +R8e'2~+ 0 00 +RU5eU5~12, 

where ~=4CP' -cP=O [using Eqs. (58) and (59)]. Or, in 
general, at a moment mT01 with T01 = QToo, 

I = I T 2R"'e'm- t R(q-llne'n~12, 
n.O 

(60) 

where 

~=QCP'-CP, 

or, using Eqs. (58) and (57), 

~ = 21T II( QT 02 - Toil = 0 • (61) 

Then, due to Eq. (61), Eq. (60) becomes 

_ 4 2m /1 - R(q-U(III+1) 12 
I - T R 1 _ R (q-l) • (62) 

Again as in Eq. (55), we have lost the dispersion effect 
and hence the possibility of spectral analysis. Thus, 
we are forced to conclude that the superposition of iden­
tical parts through (passive) replication from a single 
short pulse does not produce any information regarding 
its frequency composition. In the strictest sense, in­
terference is taking place. But does it have any physi­
cal meaning from the view point of an experimentalist? 
It is apparent that the superposition of physically dif­
ferent parts of a wave train is a necessary condition for 
producing a dispersion effect (frequency information) 
through interference (diffraction). 

We have also considered a situation that is somewhat 
similar to the case considered at the end of Sec. V.B, 
where the width of the incident pulse is larger than that 
of the second FP; T01 = QT02 and M= ST02' The situation 
can be understood from Fig. 10 (note, especially, the 
dotted curves which indicate the width of the pulses). 
Again the analysis confirms the above conclusions. The 
essential dispersive effect from interference arises due 
to the superposition of the different physical parts of the 
same wave train. Thus, the proper spectral analysis 
of a single ul~rashort pulse is extremely difficult, if 
not impossible, by interferometry. 

YD. DISCUSSION 

We have derived the response characteristics of 
Fabry-Perot interferometers for a single pulse of light 
of different lengths and also to a sequence of regular and 
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coherent pulses of light. It appears that the width of 
such pulses can be determined and their spectral analy­
sis can be carried out with a judicious choice of the 
separation between the Fabry-Perot plates for pulses of 
width down to subnanoseconds, whereas such analysis 
is extremely difficult, if not impossible, for pulses of 
width of the picosecond range by interferometry. 
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