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SUMARIO

Si los patrones de haces multiples ocurren solamente cuando los haces se han superpuesto en sentido real fisico,
entonces la funcién de respuesta de instrumentos como el Fabry-Perot y la rejilla a pulsos cortos debe ser dependiente
a la forma y orden de la interferencia. La conclusién anterior no sigue de la técnica de descomposicion de Fourier.
Ademis, encontramos que la frecuencia instantinea es mds relevante que las componentes en frecuencia de Fourier en
experimentos de interferencia.

ABSTRACT

If multiple-beam interference pattern is produced only when the multiple beams are superposed in the real
physical sense, then the instrumental response curve of Fabry-Perots and gratings to short pulses should be pulse-
shape and order dependent. Such a conclusion does not conform with the Fourier decomposition technique. Further
we find that the instantaneous frequency is more relevant than Fourier component frequency in interference ex-
periments.

1. Introduction

In a previous series of papers (Roychoudhuri 1975a, 1975b, 1976, 1977) an attempt was made
to analyze the response of Fabry-Perot interferometers (FP) and gratings to light pulses of very short
duration using the causal concept of real physical superposition of the multitude of beams replicated
from the parent pulse by these instruments. The major conclusion has been that the instrumental res-
ponse function for conventional spectrometers like FP and gratings depends not only on the pulse shape
but also on time, which has apparently been ignored by people doing spectroscopy of pico- and nano-
second light pulses (both regular coherent and random spontaneous pulses). Thus to do proper spec-
troscopy of pulsed light, one must know the shape of the incident pulse to compute the instrumental
response curve (see Equation 14) that should be deconvolved from the recorded instrumental pattern
to extract the true spectral information.

Users of Fourier transform technique of decomposing a time-pulse into a series of infinitely
long (monochromatic) single frequency radiations apparently feel no need for such a conclusion, be-
cause they can deconvolve the monochromatic instrumental response function from the recorded pattern
due to a pulse.

So in the next section we shall compare the results of Fourier decomposition technique with
those obtained by the principle of real physical superposition. And following that we shall present
a discussion on the reality of Fourier component frequencies.

1I. Comparison of the Two Interpretations

Let us begin with the Fourier decomposition interpretation. Suppose we clip off an ideal rec-
tangular pulse f(¢) of width ¢ (Figure 1) from a stabilized single mode (v,) laser beam focused through
a, say 10 um, pinhole on the rim of a disc rotating at a very high speed. Then the Fourier decom-
position implies that

F.T.
1(t) [rect. of width §t] «——— F (v — vo) = dt sinc w(v — vo) 8t (1)

Thus we have a large number of monochromatic frequencies given by a sinc function whose full width
at half the maximum (Figure 1) is dvy where

L2
dvpdt = 09 2)
Let us now imagine that we have two gratings of the same resolving power # — 10°: the first one
with a total number of lines N — 105 working at the m — 1 order and the second one with N — 102
lines and m — 102 order. Classically, the resolving power is
v

,@:*:MN:IUE, (3)
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Fig. 1. (a) An ideal rectangular pulse of light of frequency v, of width dt. (b) Distribution of the Fourier decomposed
monochromatic components of the rectangular pulse.
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where dv, is the full width at half maximum. The factor 09 appears because the grating resolving power
is defined (following the Rayleigh criterion) using the width _from the center of the peak to where
it goes to zero for the first time; this width is a little léu:ger,r (l/d.ié), than the half-width dv, we
are using. We prefer to use the half-width criterion because of the fact that our instrumental response
function does not go to zero for either the FP or the grating. Both the gratings under discussion will
give the same instrumental half-width as long as the product mN remains constant (Equation 3). If we
accept the Fourier decomposition as a reality, then for each component frequency we should get a grating
response of functional form,

G sin xmN n

M= V& s

( m) sin um (

where 1, — mk/c, mh being the delay between the consecutive wavefronts in the m-th order. Then

the total effective width, dvgg, of the grating pattern produced by a single frequency (v,) rectangular
ulse, f(t), should beVgi the convolution,
Pl s

G(vim) B F(v) ©)

Now, suppose we choose a pulse f(t) of width 8¢ such that it contains 10° complete optical cycles (im-
plying a pulse of picosecond order in the visible range), that is,

ot = 103/v (6)
Then, using Equations (2) and (6), the Fourier half-width
o e
dvp = o X EL0B i, (7)
Whereas the grating half-width, from Equation (3) is
dvg = 0'—%9-' S 0505y (8)

Thus the width of the monochromatic grating response function G (vt,) is two orders of magnitude
narrower than the Fourier frequency distribution function F (v) for our chosen case. Then the effective
width of the grating pattern to the short pulse f(), in spite of the convolution (relation 5), is approx-
imately that of the Fourier half-width,

6VFG ~ BVF (9)
Probably, such observations have so far given the impression that the Fourier decomposition technique

explains the reality very well.

Let us now look at the very process by which a grating produces its interference (diffraction)
pattern. Following Huygens’ principle all the slits of a grating produce their own wavelets which in
the m-th order direction have a regular delay of t,, — ml/c between any consecutive pair. In the case
of stationary illumination, all the wavelets could be simultaneously present with the time delay amounting
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only to a relative phase delay and the grating function of Equation 4 is a reality to any detector. But
when the incident radiation constitutes a short pulse, like the one with only 10% optical cycles, one
can not superpose more than g beams at a time, in the m-th order, where

8t mh m (10
—qu—q—C——qT )
or
Wt = qgm = 102 (11)
(For m = 1, ¢ = 10° and for m — 10% g = 10). Then the maximum resolving power that one can
obtain at the most opportune moment with either of the gratings under discussion is
v
— = mq = 10° (12)
?Wct/g?z
or
s [
dvg: = 69 X 102 v = dvp (18)

(where the suffix ¢ emphasizes the fact that such an effect is only transient). Thus one might say
that the dynamic resolving power of a grating to a short pulse can not exceed that given by the
Fourier decomposition band-width, dvy. But this is only a momentary phenomena that can be separated
only by exotic equipment like a picosecond streak-camera. In reality what happens at the classical
spectral plane of the grating is as follows. First, there is uniform energy due to one pulse from one
slit for a period of time 71,; then there is a two-beam pattern for the same period 7,; then there
is a three-beam interference pattern for the same period, and so on up to a (¢ — 1) beam pattern;
then there is a ¢ beam pattern for ([N — ¢| 4 1) t,, sec and then back to (g — 1), (¢ —2), - - -, 2, 1,
0 beam patterns, each existing for a period of t,. The total integral exposure is

i e
sin®gmp sin*mg

E(m) = 21, M, N — i)y P — 14

(m) T 2,, et (] g+ D = = (14)

For an FP the expression is very similar to above, except that the grating function sin?/sin® is replaced
by the appropiate FP function (Roychoudhuri 1975b, 1976)

1 4+ F, sin?m
T, Lﬁ (15)
1 -+ F sin*am

where 77, I, and I are functions of FP mirror transmision and reflection characteristics.

Thus when our model of real physical superposition predicts a spectral curve given by Equa-
tion 14, the Fourier decomposition model predicts a convolution relation (5); they are not equivalent.
The concept of the limiting dynamic resolving power (Equation 13) takes into account only the last
term of Equation 14. The physical meaning of Equation 14, as has already been explained, is that
one sums a large number of broad to narrow multiple-beam interference patterns; the resultant will
have a wide half-width, wider than the Fourier bandwidth, and an appreciable energy in the tails. Thus
our prediction is in direct disagreement with that of Fourier decomposition method. So far, we have
not carried out any direct experimental verification, but the existing publications do support us to a
limited degree. It is a common observation (see review article by Bradley et al. 1974) that a grating
shows a spectral width for picosecond pulses that is wider than the time bandwidth implies. Although
the literature explains this effect as exclusively due to self-phase modulation at high energies of short
pulses, we believe that a part of it is due to the time evolving interference pattern described by our
model of real physical superposition. Further, a long tail in the recorded spectrum of picosecond
pulses can be seen in many publications like Von Der Linde et al. (1970), although the point has
not been discussed explicitly in the literature.

The same instrumental function of Equation 14 is applicable to spontaneous pulses with random
phases for the interference effect between two dilferent pulses averages to zero.

III. Are the Fourier Monochromatic Components Real?

From the viewpoint of classical causality it is difficult to accept Fourier decomposition as a
physical reality especially for interference spectroscopy. Any signal has a finite velocity if we follow
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the special theory of relativity; and light in vacuum has the highest velocity. Then an arbitrary shaped
but finite size pulse will need a finite time to pass through an FP or a grating. Further, since an
FP (a pair of beam splitters) or a grating (a regular array of transparent and opaque lines, or a regular-
ly displaced stack of glass slides or an equivalent) are inert systems without any significant memory
(to our knowledge) and are perfectly linear to electromagnetic fields, they can not perform Fourier
decomposition. Fourier decomposition requires a complete knowledge regarding the shape and duration
of a pulse f(t), for the amplitude and phase of each Fourier component are determined by the totality
of information carried by f(t),

/O — f f(t) exp (2mivt)dt (16)

So, only systems with a special type of memory can carry out such a detailed integration. It is the
property of the polychromatic field modified in the presence of an FP or a grating and not due to
any special property of these instruments that the energy corresponding to different optical frequen-
cies is separated. Naturally, the response of these instruments regarding their capability to separate
different frequencies will be different for steady state and transient illuminations. Further, we do know
that the mathematical decomposition into sinusoidal components is not unique. It can be decomposed
into other functional forms also. Then which decomposition is physical and which is metaphysical? For
example, Van der Pol (1953, Van Name, 1954) has shown that a saw-tooth wave can be decomposed
into a set of either orthogonal square waves or sinusoidal waves.

But let us assume, for the sake of argument, that the Fourier components exist in reality.
Then, is there a way to demonstrate it with a linear system? We know that when two collimated beams
of the same frequency and of steady relative phase interfere, they produce three dimensional planar
fringes of cosine energy distributions, but only in the region of real physical superposition. These
fringes are stationary in space. But if one of the beams has a different effective frequency but other-
wise steady phase relation with the other, the planar fringes move with a velocity proportional to the
frequency difference (beat) in a perpendicular direction keeping themselves parallel to each other. If
one has a series of beams, instead of two, one can see sharp multiple-beam fringes, instead of the
wide cosine type, which are stationary in space for single frequency and move steadily in the usual
orthogonal direction if their effective frequencies differ from each other by a regularly varying factor.
This last experiment can be simulated easily using a Fabry-Perot illuminated by a narrow laser beam
incident at an angle at one end of the mirror pair (Roychoudhuri 1975c). Then the FP produces a
series of multiply reflected beams spatially separate but parallel to each other (Figure 2). A lens can
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Fig. 2. A narrow laser beam incident on a Fabry-Perot at an angle § produces many parallel reflected beams. They
can be superposed by a lens to produce multiple-beam interference fringes. These fringes move laterally when one
of the mirrors is given a wvelocity.

focus this series of beams to produce sharp fringes. Now, if one of the mirrors is given a steady velo-
city v, the beam which comes out after n reflections from the moving mirror has a Doppler-shifted

frequenc
1 ? 2v cos 6 \"
Vo = Vo (l + ————) (17)
¢

where 0 is the angle of incidence of the laser beam. The effect of such a Doppler shift is to make
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the sharp planar fringes move in a direction perpendicular to themselves with a velocity proportional
to v.

With this background, we can argue that if the Fourier components of a pulse were real, then
after passing through a plane grating each of the component frequencies should propagate in a differ-
ent direction,

b sin 8, = md, = mc/v, (18)

where b is the grating constant and m is the order of diffraction. If all these diffracted frequencies are
superposed by an imaging lens (Figure 3), then they should produce the usual sharp planar fringes
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Fig. 3. If the Fourier monochromatic components exist in reality they should be diffracted at various angles by a
grating. If they are superposed again, the beat signal should show up as a lateral movement of the interference fringes.

moving in a direction perpendicular to their own plane. The effect should be observable with proper
arrangements if the Fourier components are real for they must have a steady phase relation to each
other by Fourier transform relation. We hope to report in the near future some experiments along
these lines.

Let us come back to the basic concepts of interference spectroscopy with FPs and gratings. Both
of them sample the incident beam to produce a train of beams with a regular path delay (Figure 4)
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Fig. 4. Interference spectrometers like Fabry-Perots and gratings replicate the incident beam into a train of regularly
delayed (say A) beams. Real physical interference of this train of beams is the reason behind separation of energies
due to different (really) existing frequencies. The free spectral range is ¢/A = v/m and the resolving power is NA/\
= mN, where m is the order of interference and N is the number of interfering beams.
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either through amplitude division (FP) or wave front division (grating.) If the path delay between
any pair of consecutive beams is A, the free spectral range,

5 ¢ ¢ v 1 19
B R e .

and the resolving power,

NA v

.% = — = mN — —

A ov

where N is the number of lines for a grating and roughly twice the finesse number for an FP. The

energies corresponding to different frequencies can separate in space sufficiently clearly (locally or

permanently) through phase matching only when all the N sampled beams interfere in the real

physical sense or make an N-th order correlation in real space. So a linear interference spectrometer

can not give rise to energies for non-existent frequencies like Fourier components. But phase modula-

tion of an incident pulse will shift the “position” of the energy maximum even for the same frequency,

giving rise to an apparently different frequency for the interference spectrometer. Thus we can not

distinguish between the “true” frequency of the electromagnetic wave and the so called instantaneous

frequency of the field (Mandel 1974, Gupta 1976) given by the time derivative of the total effective
phase factor.

(20)

At this point we would like to mention the findings of Mandel (1974) that the instantaneous
frequencies and the Fourier frequencies do not correspond to each other, in general. But Mandel is
of the opinion that Fourier component frequencies are relevant for interference spectroscopy and in-
stantaneous frequencies for heterodyne spectroscopy. We believe that it is always the instantaneous fre
quency that is relevant in any interference experiment, although we can measure only the time-average
of the instantaneous frequency due to the lack of an instantaneous detector. A resultant electromag:
netic field, produced by whichever kind of interference, can have no knowledge as to whether the
square-law detector, placed at the region of superposition, is connected to measure the low frequency
beat signals (heterodyne spectroscopy) or to record only the time average spatial energy distribution
(so called interference spectroscopy; in the latter case the beat signal is equivalent to lateral movement
of interference fringe that widens the time average fringe).

Let us come back to the FP experiment (Figure 2) to emphasize our point. Suppose the in-
cident laser has more than one longitudinal mode and they are independent in the sense that their
arbitrary phase factors vary randomly irrespective of each other and give rise to the finite width of a
laser line. Thus the output laser beam has steady energies at several separate mean frequencies (in
the “instantaneous” sense); no steady beat exists. Then all the multiply reflected beams (Figure 2)
are carrying all the longitudinal modes (mean frequencies) simultaneously. No separation of frequen-
cies has taken place because there is, so far, no real physical superposition. But at the focus of the
lens where all the beams are combined, the effect of interference spectroscopy comes into existence and
the existing frequencies are spatially separated. This separation exists within the region of superposition
and not beyond. This can be verified simply by putting a tilted ground glass at the focal region with
the plane surface of the glass toward the FP. A part of the amplitude of each beam is reflected and
these amplitudes propagate as independent beams as before, carrying all the frequencies unseparated
in each of them. Whereas the other part of the amplitudes produce an energy distribution due to
interference of all the beams that will be scattered by the rough surface. An enlarged image of this
scattered radiation clearly shows fringes due to each longitudinal mode (of course, the FP must have
the necessary resolving power which is not very stringent; see Roychoudhuri and Noble 1975). In this
same focal plane one can put a square law detector, instead of the ground glass, and connect it to
appropriate electronic devices to do heterodyne (homodyne) analysis. For example, with an ultrafast
electronic system, one should be able to detect the rate of phase fluctuation of each mode besides the
much slower information, the beat between modes and the beat between the beats.

The type of interference experiment described in Figure 2 corresponds to a situation where the
redistribution of energy due to interference is only local; the independence of the individual beams
beyond the superposition region is preserved. Most interferometers arranged to produce many fringes
correspond to this situation. However, gratings with large N in the far field, two beam interferometers
set for zero-fringe and FP illuminated by a collimated beam or an FP illuminated by any beam but
with the mirrors very close and especially, with high reflectivity, show a permanent redistribution of
energy due to interference. Further details will be reported elsewhere.

IV. Conclusion

We have shown from the first principle that the grating and Fabry-Perot patterns due to short
pulses of light have width and tail energy greater than that predicted by the Fourier decomposition
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technique. We have offered as indirect support some of the experimental findings by other people. Then
we have described an experiment which might be able to test whether the Fourier monochromatic
components physically exist. But from the very structure of Fourier decomposition integral and the
principle of causality, we believe that corresponding monochromatic components can not be experienced
by linear systems like Fabry-Perots and gratings. In the process of these arguments, we found that
the so called instantaneous frequency (the time derivative of the total phase factor), rather than the
Fourier frequency, corresponds more closely to the interference experiments.
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