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ABSTRACT  
 

In a previous paper [1], we have proposed that photons are diffractively evolving classical wave packet as a propagating 
undulation of the Complex Cosmic tension Field (C2TF) after the excess energies are released by atomic or molecular 
dipoles as perturbations of the C2TF. The carrier frequency of the pulse exactly matches the quantum condition 
ΔEmn=hνmn and the temporal envelope function creates the Lorentzian broadening of the measured spectral lines. In this 
paper we present both semiclassical and QM theories of emission and compare the QM prescribed  natural linewidth of 
emitted spectra and the Doppler free laser absorption spectra to further validate our photon model.  
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wave packet. 

1. INTRODUCTION 
 
Einstein first introduced the concept of light quanta in 1905 when he realized that the entropy of radiation in a cavity 
varies linearly with volume [3, 4].  The following quote is taken from his translated paper [3]. 
 
It seems to me that the observations associated  with blackbody radiation, fluorescence, the production of cathode rays 
by ultraviolet light, and other related phenomena connected to with the emission or transformation of light are more 
readily understood if one assumes that the energy of light is discontinuously distributed in space. In accordance with the 
assumption to be considered  here, the energy of a light ray spreading out from a point source is not continuously 
distributed over an increasing space but consists of a finite number of energy quanta which are localized at points in 
space, which move without dividing, and which can only be produced and absorbed as complete units. 
 
The photon concept is more than a century old but both classical and quantum theories of radiation do not provide us 
with a prescription for modeling the shape and structure of an EM radiation emitted or absorbed by atoms and dipoles. 
Einstein himself seems to have had struggled with questions about light quanta [20] as indicated in his writing toward the 
end of his life:  “ All fifty years of  conscious brooding have brought me no closer to the answer to the question: What 
are light quanta? Of course today every rascal thinks he knows the answer, but he is deluding himself.”  
 
The quantum theory of interaction between matter and field, Quantum Electrodynamics (QED), has been successfully 
applied to matter and field interactions. Despite the great success of QED in predicting matter field interactions 
outcomes, QED does not provide us with the nature and structure of a photon [12, 17]. QED does not also give us 
guidelines for localizing photons.  Semi-classical radiation theory has also been successfully used in predicting 
experimental results but there are disagreements in some of the experimental results [19]. Our experimental data are 
guided and dictated by the interaction process between atoms, dipoles and fields.  Atoms and dipoles as detectors guide 
our observation of emission and absorption processes. Developing a model of the emission process requires visualization 
of the invisible interaction process during emission.  
 
In a previous paper [1], we have proposed that photons are diffractively evolving classical wave packet as a propagating 
undulation of the Complex Cosmic Tension Field (C2TF) after the excess energies are released by atomic or molecular 



dipoles as perturbations of the C2TF. The carrier frequency of the pulse exactly matches the quantum condition ΔEmn= 
hνmn and the temporal envelope function creates the Lorentzian broadening of the measured spectral lines. In this paper 
we will compare and contrast the QM prescribed natural line width of emitted spectra and the Doppler free laser 
absorption spectra to further validate our photon model.  In section 2 we discuss the spectrometric process to emphasize 
the relationship between observed fringes and the spectrometer time constant. In section 3, we present semiclassical 
theory of spontaneous emission and interpretation of linewidth. In section 4, we present quantum mechanical treatment 
of spontaneous emission and linewidth.  In section 5, we present our photon model and discuss interpretation of 
linewidth. Some Doppler-Free linewidth measurements are also discussed.   In section 6, we summarize our discussion 
of linewidth and photon wave packet.  

2. SPECTROMETRY 
 
The discovery of laser and the development of laser spectroscopy has provided us with increasingly precise 
measurements of atomic and molecular emission and absorption spectral lines [10, 11, 14].  In any standard classical 
spectroscopic treatment, a Fourier monochromatic wave referred to as continuous wave-CW is incident on spectrometer-
Fabry-Perot or N slit Grating. A very basic and simplified version of the spectrometric process is shown in Figure 1. The 
intensity distribution on the screen is given by the Continuous Wave (CW) formula [6]  
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The CW formula for the intensity distribution of fringes assumes that the incident radiation is monochromatic- a wave 
that is infinite and continuously distributed over space. This violates conservation of energy and is inconsistent with the 
finite intensity fringes it produces.  An alternative treatment of the spectrometric process given by Roychoudhuri, et al. 
[2] considers any classical spectroscopic instrument as having its own instrumental time constant ττ N=0 .  In a N slit 
grating, for example,  if  a single short pulse light with frequency ν is incident on the slit, the grating replicates N finite 
pulses separated by time τ. For Fabry-Perot this time delay is given by 2d/c.   For the N-slit diffraction grating it is 
dsinθ/c. The intensity distribution in Eq.(1) has been shown in reference [2] to be a  special case of time-integrated 
intensity distribution of  finite pulse in the limit as the pulse width approaches the time constant of the spectrometer τ0 = 

Nτ . The grating divides the radiation field into N fields with the same frequency. The fields each with its own delay 
introduced by the grating arrives at the detector-whose dipoles then sums the these fields to produce the intensity profiles 
that we observe. 

a)  

 b)                    
 

Figure 1.  A schematic diagram for (a) N slit diffraction grating  and (b) Fabry-Perot Interferometer. 
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The fringe intensity distribution as a function of time is given by the square modulus of the sum of the partially 
superposed train of pulses [2] 
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 Where d is the dipole stimulation response to the radiation field. The time integrated fringe energy distribution is given 
by  
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is the normalized autocorrelation function.  In the limit when the pulse width is larger than the spectrometer time 
constant 0τ , which is the  size of the N-slit in the case of a diffraction grating, they recover the CW expression for the 
intensity distribution of the fringes[2] given by   
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Detailed work and expression for the Fabry-Perot interferometer can be found in reference [ 2]. The result in Eq. (5) 
implies that the width of the fringe intensity distribution is a function of the spectrometer time constant τ.  If a short 
pulse with a pulse width less than Nτ is incident on the grating, then the fringe intensity distribution would be wider than 
the CW intensity distribution as shown in Figure 2.  The fringe width decreases as the pulse width increases. The 
relationship in Eq.(5) also implies that the variation of the width in intensity distribution is not a consequence of new  
Fourier frequency of the intensity spectrum of the pulse.  The pulse has a single frequency ν and the grating replicates 
the pulse but does not introduce any new frequency.   

 
a)                                               b)                                                c) 

Figure 2: a) Frequency spectrum of a 3-mode laser, b) Fabry-Perot Interferometer and c)   Intensity distribution of 
the 3-mode laser. 
 

The intensity distribution shown in Figure 2c is as a convolution of the Lorentzian profile and Gaussian profiles and is 
referred to as Voigt profile [10].  Deconvolution of the Voigt profile gives Lorentzian intensity profile. The value of the 
half- width at half-maximum (HWHM) of the Lorentzian profile is the natural linewidth of the spectral line. The natural 
linewidth for 87Rb D-line  transition (5 2 S1/2 → 5 2P3/2) is about 6MHz [11, 13, 15]. The linewidth measurement from  
Doppler free saturation absorption dips reported in [13] for 87Rb and 85Rb are MHz122 ±=∆v  and 



MHz,120 ±=∆v respectively. These results are in disagreement with the linewidth of 6MHz predicted by quantum 
mechanics. 

3. LINEWIDTH: SEMICLASSICAL APPROACH 
 
The discussion presented here closely follows that of reference [7]. If we assume an excited atom as a damped harmonic 
oscillator with a natural frequency ν0 and damping constant γ,  then we may write  
 

 𝑥 ̈ + 𝛾 𝑥  ̇ +  𝑣0   
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where x(t) is the position of the oscillator. The damping constant is given by 0
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radius of the electron.  Imposing the initial condition x(0) = x0 and 𝑥̇(0) = 0  and assuming small damping constant for 
atomic oscillators, we may write the amplitude of oscillation to be  
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The frequency ν0   corresponds to the central frequency of an atomic transition from an initial energy level Ei to a final 
energy level Ef  and is given by  ν0 = (Ei - Ef)/h . The amplitude of the oscillation decreases exponentially.  For atomic 
transition this would mean that the emitted radiation is no more monochromatic. Instead, it is a superposition of all 
monochromatic frequency distributions. The amplitude of the emitted radiation also decreases with time and can be 
represented as a superposition of oscillators of different frequencies 
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Taking the Fourier transform of Eq. (8) gives us the amplitude of oscillation  
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The intensity of the emitted radiation is proportional to |𝐸(ν)|2  and can be expressed as   
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The normalized Lorentzian intensity profile is defined as L(ν-ν0 )=  I(ν-v0)/I0  [10].  The normalized Lorentzian is then 
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(a)                                                                                     (b) 
Figure 3. (a) An exponentially decaying electric field amplitude and (b) Lorentzian intensity profile using Eq.(11). We have used 
the resonance frequency of Rubidium 87Rb  ( MHz 6  andHz1084.3 14

0 =×= γv ). The Lorentzian spectral line profile 
shows that the full-half-width at half maximum (FWHM)  is γ.  

4. LINEWIDTH: QUANTUM MECHANICAL APPROACH 
 
In Quantum mechanics atoms and electrons are represented by a wave function [8, 9]. Observable results are computed 
as mean values of the operators representing the observables. Linewidth of a spontaneous emission of radiation from an 
atom making one of its allowed transitions is proportional to the transition probability corresponding to this transition.  
Following the discussion in reference [7], we consider a two level atom with energy levels Ea

  and Eb to help us obtain a 
relationship between linewidth and transition probability. If we denote the transition amplitudes by bb0 and ba1λ with the 
initial condition that 0)0(and1)0( 10 == λab bb , then to first order approximation in the perturbation theory, we have  
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Assuming solutions of the form 2/
0 )( t

b etb γ−=  where γ is assumed to be the transition probability per unit time.  This 
leads to a solution for ba1λ of the form 

)2/(
1)(

0

2/)(

0|11

0

γλ

γ

λλ

λ

ivv
eHtb

ttvvi

baa +−
−

−=
−−



 .                                                           (13) 

The probability of finding the system in its ground state at time t is given
2

1 )(tba λ . For time /bEt >>  (or time 

much greater than its lifetime 1/γ) the atom has jumped to the ground state by releasing radiation of energy λhv . Thus, 

at time ∞→t , the probability that an energy of  hνλ has been emitted is 
2

1 )(∞λab . The intensity of the emitted 

radiation is proportional 
2

1 )(∞λab  and is given by (detailed work can be found in reference [7]) 
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The intensity distribution expression in Eq.(14) obtained under quantum mechanical treatment is the same Lorentzian 
expression given in Eq.(11) that was obtained by considering a damped classical harmonic oscillator. In the classical 
treatment the linewidth γ is interpreted as a damping constant of the damped harmonic oscillator atom that leads to the 
exponential decay of the energy and amplitude of the emitted radiation. In quantum mechanics the linewidth γ is 
interpreted as the spontaneous transition probability per unit time. Using uncertainty principle =∆∆ tE  it can be seen 
that γ is related to the width of the energy level Eb as γ=bE . This relation implies that sharper energy levels have 
shorter lifetime.  An extensive discussion of semiclassical and quantum theories of radiation can be found in [18, 21].  
 

5. LINEWIDTH:  PHOTON WAVE PACKET MODEL 
 
 Both standard classical and quantum treatments presented in the previous sections do not provide us a model for the 
emitted EM radiation. We now look at the model of emitted EM radiation wave packet proposed in [1]. The emitted EM 
radiation has a unique frequency ν and energy mnmn hE ν=∆ .  It cannot continuously spread at all points in space 
because of conservation of energy [3]. Spontaneous emission of EM radiation is a time finite process. Thus, a photon 
model of the emitted radiation as an EM wave would be expected to have a finite temporal width of unique frequency ν. 



In our proposed photon model, the emitted EM wave packet of frequency ν  is modeled by  a rapidly rising power and an 
exponential decaying function  as shown in Figure 4. The electric field representing the wave packet envelope is given 
by 
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The rapidly rising and exponential dying amplitude ( )ra t model is given by      
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where r =0.05 and ns1=τ . More analysis and study is needed to establish the range and values of r.  The pure 

exponential ( )a t  used here is given by / 2( ) ta t e τ−= . The Lorentzian intensity profile of the emitted radiation follows 
from the time finite exponential decaying model of the emitted radiation. For EM radiation emitted with unique 
frequency, the Fourier transformation does not introduce a new EM frequency or a frequency spread [2]. 

 
Figure 4. Top: A model for a rapidly rising and exponentially dying photon wave packet envelope with carrier frequency ν. 
Bottom Left:  Represents photon wave packet amplitude;  pure exponential (lower curve) and rapidly rising but exponentially 
dying (upper curve). Bottom Right: Fourier transform of the pure exponential has a slightly larger FWHM (upper curve) than the 
rapidly rising but exponentially dying amplitude model (lower curve). In computing, we have used the frequency of red cadmium 
light as the carrier frequency for the photon wave packet.  

 

6. SUMMARY 
 
Almost all spectroscopic measurements of emitted intensity distributions involve extracting the Lorentzian profile from a 
broadened intensity profile [15]. Some of the sources of the broadening are due to Doppler (thermal), collision, and 
optical power in laser spectroscopy.   In any atomic emission, the emitted radiation is time finite with a unique carrier 



frequency ν and finite energy packet hν imparted to it by the emitting atom. The physical model of the emitted energy 

mnmn hE ν=∆  and its evolution into a classical wave packet is still missing. A distribution of EM radiation over all 
possible frequencies would require infinite energy and violates conservation of energy. The Lorentzian spectral 
broadening is commonly attributed to the frequency distribution as implied by Fourier Transform. In the photon model 
presented here the Lorentzian linewidth is attributed to the exponentially decaying photon wave packet envelope 
function that results in a  Lorentzian profile but based on the shape of the emitted EM wave packet.   
.   
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