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Abstract 

We present a mathematical approach to appreciate that short pulse characterization requires recognizing 
inseparability of the measurements of the amplitude envelope-correlation and spectral measurements and then use a 
suitable iterative approach to derive the real characteristics. We will use a standard Michelson interferometer, as 
usual, to introduce the autocorrelation function of a pulse containing single and multiple frequencies.  In the process, 
we also underscore that detectors play the key role in generating measurable Superposition Effects (SE), recognized 
as fringes after the detectors carry out the square modulus operation. Simple mathematical summation of amplitude 
factors, the Superposition Principle (SP), is not directly observable. We underscore this by mentioning that we 
present EM waves as classical and detectors as quantum mechanical. This semi-classical approach has been 
established by Lamb and Jaynes, which is indirectly supported by Glauber’s comment, “A photon is what a detector 
detects”. The semi-classical approach helps us separate the phenomenological difference between the absorbed 
detected energy by a detector (SE) from the energy supplied by the simultaneously present multiple wave 
amplitudes (SP). As in atomic and molecular physics, we use the detector’s dipolar stimulation as the product of its 
linear dipolar polarizability multiplied by all the EM fields stimulating it simultaneously. The analysis also 
demonstrates that for a pulse containing multiple frequencies, the two-beam autocorrelation function becomes a 
product of the traditional amplitude correlation factor and a frequency-comb correlation factor. Hence, the spectral 
interpretation of a short pulse and two-beam autocorrelation are inseparable. Therefore, the detailed characterization 
would require iterative computational approach by guessing the most plausible functional forms. This deeper 
understanding can be applied to rapid re-calibration of pulsed lasers that need to be maintained at single mode but 
has the tendency to move to multimode behavior. If the newly measured autocorrelation function differs from the 
original amplitude correlation factor, then one should check for the spectral characteristics first, before assuming 
that only the pulse shape has changed.   

Keywords: Pulse characterization; Amplitude envelope-correlation factor; Frequency comb-correlation factor; 
Measurable Superposition Effect; Mathematical Superposition Principle; Non-Interaction of Waves (NIW); 
Coherence; Spectrometry. 

 

1. Introduction 

We present a mathematical analysis to demonstrate that the two-beam autocorrelation function for a laser pulse 
containing multiple longitudinal modes (frequency-comb) is a product of the traditional amplitude correlation factor 
and a frequency-comb correlation factor. Analytically we use the semi-classical approach established by Lamb [1] 
and Jaynes [2,3] and indirectly supported by Glauber comment, “A photon is what a detector detects” [4]. This 
approach separates the conjoint stimulation provided by the n classical waves ( )n nE ν  (Eq.1) to the detector; whose 

quantum properties are contained in its linear dipolar polarizability ( )χ ν , with nν  being the resonant band of 
quantum transition frequencies.  
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Then the frequency resonant quantum detectors carry out the non-linear quadratic process step, d
∗

≡ Ψ Ψ , where d is 
the released photo electric current by the detector [5,6]. 

2
( ) ( )n nn nd Eχ ν ν∗Ψ Ψ =≡ ∑                                                               (2)  

Please, note that the energy re-distribution, or the fringes due to Superposition Effect (SE), implicated by this 
quadratic Eq.2, becomes manifest only after the detector array absorbs energy out of all the simultaneously 
stimulating EM fields impinged on the detector. The quantumness in the light detection data emerges through the 
quantum properties of the detecting dipoles, which are embedded in its quantum characteristics ( )χ ν . If we have a 

very narrow band of frequencies, then ( )χ ν can be replaced the detector constant 2χ and taken out of the two 
operations represented by the summation and the square modulus, as per mathematical rules: 

22
( )nn

d Eχ ν
∗

Ψ Ψ =≡ ∑                                                             (3) 

For this narrow-band case, Eq.3 will still validate the measured data (scientific evidence), however, the equation 

may imply that the field amplitudes by themselves 2
( )

n nE ν∑ can carry out the consecutive operations of (i) first re-
organizing the amplitude distribution through self-summation and (ii) then re-organize the quadratic energy 
distribution accordingly (intensity fringes). Electromagnetic wave amplitudes, by themselves, do not possess such 
capability. The detectors carry out these operations. That is why we can never register Superposition Effect without 
inserting a detector array within the volume of superposed light beams. Energies of EM waves can be altered only 
through classical and/or quantum mechanical interactions with materials [7-9]. 

2.1 Two-beam autocorrelation function for a pulse with a single carrier frequency 

              The detailed history and mathematical formalism behind the evolution of the concept of coherence, or 
autocorrelation function between a pair of replicated fields, can be found in references [10,11]. To formulate the 2-
beam autocorrelation, we use some form of a two-beam interferometer, say, a Michelson Interferometer (MI) (see 
Fig.1a) and a single input pulse with a single carrier frequency (see Fig.2b). For mathematical simplicity, we assume 
that the pulse is clipped off from a CW single frequency laser by a suitable electro-optic gating device. 

       

(a)                                                    (b)                                                     (c) 

Figure 1: (a) A Michelson interferometer (MI). (b) The incident pulse envelope and its carrier frequency. (c) The MI 
generates two replicated pulses with a relative delay out of a single incident pulse. These pair of pulses are partially 
superposed and jointly stimulates a detector with time varying amplitudes. 
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The MI replicates an initial single pulse into a pair of pulses with a relative temporal delayτ as ( )exp[ 2 ]a t i tπν−  

and ( )exp[ 2 ( )]a t i tτ πν τ− − −  (see Fig.1c). Then the time varying detector current will be proportional to: 

22 2 ( )

2 2

1 2

( )e ( )e
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Here 2 ( )a t  represents the instantaneous intensity. The time dependent excursions of the two-beam cosine fringes,   

2 ( )cos 2C t πντ  (Eq.2), is due to the time varying excitations of the detector caused by the displaced pair of pulses 

( )a t & ( )a t τ−  (Fig.1c). During the intervals, 1t to 3t , and 5t to 6t , there are no real physical superposition effect 

on the detector due to the absence of overlap between the pulses. The detector array will register temporally varying 

intensity due to one pulse only without any fringes during these initial and final periods. Even during the interval 3t

to 5t , the fringe visibility will vary with time as the detector experiences time varying joint amplitude stimulations. 

Only at the instant 4t , the fringe visibility will momentarily have the perfect unit visibility because the two 

amplitudes are exactly equal. A ps-streak camera, with an incident ns pulse, should be able to record this time 
evolving fringe visibility. However, if we use a long time integrating photographic plate; or a digital camera with an 

exposure, time 6 1( )T t t≥ − , we can register time integrated fringe visibility, . ( )nrm D τ as given below: 

6 1( )

.

pls.

1
( )  [1 ( )cos 2 ]( , )

E T t t

nrm
aD dtd tτ γ τ πνττ

> −
≡ = +∫                                  (6) 

2Where,    ( ) ( ) ( ) ( )a a t a t dt a t dtγ τ τ ≡ − ∫ ∫                                       (7) 

Here, ( )aγ τ represents the time-integrated normalized autocorrelation function and pls.E  is the total energy 

contained in the incident pulse. The subscript a  on ( )aγ τ underscores that its variation derives from the time 

varying amplitude envelope ( )a t , and not due to the physical existence of mathematical Fourier frequencies ( )a f , 

the Fourier transform of the envelope function ( )a t  (see Eq.10 below). Mandel and Wolf [10,11] rigorously show 
that the modulus of the autocorrelation function is the traditionally measured visibility of fringes as defined by 
Michelson: 

. . .
max . min . max . .( ) ( )( ) ( )nrm nrm nrm nrm

min aV D D D Dτ γ τ= ≡− +                                                  (8) 

From the auto correlation theorem, we also know that the normalized autocorrelation function and the Fourier 
spectral density function form a Fourier transform pair [10,11]: 

               . 2 2( ) ( ) ;      ( ) ( ) nrm nrmi f i f
a aA f e df A f e dπ τ π τγ τ γ τ τ−= =∫ ∫

                               (9)    
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Note that . ( )nrm A f is the normalized 
2( )a f (see Eq.7). We have used f to denote Fourier frequencies instead ofν

, to differentiate between mathematical Fourier frequency f from the physical emission frequencyν of EM wave 
packets from atoms and molecules. This is meant to underscore that, while the Fourier theorem is mathematically 
correct and is a powerful tool for diverse analysis, linear optical systems cannot execute complex Fourier algorithm 
of finite amplitude entering into a linear optical system with a finite velocity c .Let us recall that we use nonlinear 
materials to alter primary optical frequencies. Mathematically, the amplitude envelope ( )a t and its Fourier 
amplitude spectrum are related by the following standard Fourier transform pair: 

2 2( ) ( ) ;           ( ) ( ) i ft i fta t a f e df a f a t e dtπ π+ −= =∫ ∫                          (10) 

Note also that the Fourier conjugate variables in Eq.9 are{ & }f τ , but those for Eq.10 are{ & }f t . The parameters 

&t τ and &f ν are not interchangeable as they have different physical origins and meanings. This is not 
underscored in the prevailing texts. The parameter τ  is the measurable physical delay we introduce in our optical 
devices, which is different from the running clock time t . Similarly, f is the mathematical Fourier’s frequency and 
ν is the physical source frequency, which are usually determined by quantum transition in atoms and molecules. 
Appreciation of these distinctions between different mathematical parameters helps us make causal interpretations of 
the phenomenon under consideration when experiments validate a proposed theory [8].   
 

2.2 Two-beam autocorrelation for a pulse with two and more carrier frequencies 

In the prevailing field of pulse laser technology, the presence of multiple frequencies (frequency comb) is 
quite common. In this section, we derive the autocorrelation function for such a pulse following Michelson’s 
approach [12] to Fourier transform spectroscopy for broad and multi-line spontaneous emissions from different 
elements. We will simplify our mathematics assuming we are clipping off a single pulse, using an electro-optic 
switch, from a CW laser running in two longitudinal modes of equal amplitude. This normalized two-frequency 
spectral density function can be thought of as the sum of a pair of delta functions: 

  ,2 1 2( ) (1 / 2)[ ( ) ( )]sν ν δ ν ν δ ν ν= − + −                                                 (11) 
Then the instantaneous detector current, due to replication through the Michelson interferometer, can be represented 
by:  

   1 2 1 2
22 2 2 ( ) 2 ( )( ){e e ( ){e e( , ) } }i t i t i t i ta t a td t πν πν πν τ πν τττ − − − − − −+ −= + +                 (12) 

As per Michelson, different frequencies are “incoherent” and hence they do not “interfere”. In reality, with modern 
high-speed detector, one can register the beat signal, represented by the cross term in Eq.12. Therefore, let us 
assume that we are using a very slow detector that averages out the high frequency oscillatory heterodyne current 

into a mean DC current. Then, we can re-write Eq.9 by re-grouping the terms separately for 1ν  and 2ν , as: 

  1 1 2 2
2 22 2 ( ) 2 2 ( )( )e ( )e ( )e ( )e( , ) +i t i t i t i ta t a t a t a td t πν πν τ πν πν ττ ττ − − − − − −+ − + −=          (13) 

This is a very similar expression as in Eq.4, but a sum of two sets of intensity terms for two independent 
frequencies. Then, the time integrated slow detector current due to replicated two-frequency pulse would be very 
similar to Eq.6, but a sum of two separate frequency terms. Note that to maintain normalization of total energy, each 
mode (frequency) now should be assigned half the pulse energy, assuming equal:  

        

1 2

1 2
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Now, normalize Eq.11 by dividing both sides by pls.E : 

.
,2 ,21 (1 / 2) ( ) ( )( )nrm

aDν νγ τ γ ττ = + ×                                                           (15) 

Michaelson was using steady-state spontaneous emissions; so he ignored the correlation term ( )aγ τ  for the 

spontaneous emission pulses in Eq.12. His brilliance was in recognizing that by normalizing the interferogram 
intensity and then removing the DC term in Eq.11, he is left with the summation of pure oscillatory fringe function

1 2{cos 2 cos 2 }πν τ πν τ+ . The mathematical Fourier transform gives back the original spectral density function 

shown in Eq.11: 

 1 2,2 ,2( ) ( ) (1/2)( cos 2 cos 2 )FT FTsν νν γ τ πν τ πν τ= +≡ 

 
 

                             (16) 

We see that the autocorrelation function for multi-frequency signal and the spectral density function also form a 
Fourier transform pair. This is the conceptual origin of Fourier transform spectroscopy. Consult [12,13] for rigorous 
derivations where the input signal is more complex. 
     We can now easily generalize normalized fringe function of Eq.15 for a pulse containing a comb of N-
frequencies, provided they have been set to oscillate with equal strength through some intra-cavity gain equalizer: 

.
,

1
( ) 1 ( ) ( )nrm

a NN
Dν ντ γ τ γ τ= + × 

  
                                                             (17) 

,Where,  ( ) cos2 nnN νγ τ πν τ= ∑                                                             (18) 

For a realistic frequency comb of un-equal strengths, say a Lorentzian gain envelope for a lasing medium, each one 

of the n-th frequency term cos 2 nπν τ  has to be multiplied by the appropriate mode intensity (weighting) factor. For 

a continuously broadened frequency distribution, as in Doppler broadened spontaneous emission, the cosine fringe 
terms must be multiplied by the Gaussian weighting function and the summation of Eq.18 should be replaced by an 
appropriate integral, Eq.19. So, the frequency correlation function remains the cosine Fourier transform of the 
spectral density function.  

                                     ( )  s( )cos2dνγ τ ν ν πντ= ∫                                                       (19) 

The amplitude-frequency joint correlation function remains as the product of the two separate correlation functions: 

, ( ) ( )  s( )cos2a v a dγ τ γ τ ν ν πντ= ∫                                                (20) 

Eq.19 through Eq.20 are important to extract deeper insights about the joint amplitude-frequency correlation 

function , ( )a νγ τ for all realistic pulsed emissions. We can now generalize , ( )a νγ τ as a product of the two separate 

correlation functions due, first, to the finite amplitude envelope of a pulse; second, to the distributed carrier 

frequencies contained in the pulse. We have dropped the subscript N from , ( )N νγ τ  to accommodate the fact that it 

could also be due to a continuous frequency distribution function: 

, ( ) ( )( )a aν νγ γ τ γ ττ ≡                                                                      (21) 

Using the convolution theorem, the Fourier transform of Eq.21 can be expanded, using all the logics behind Eq.16, 
as: 

 

.
, ( ) ( ) ( ) ( ) ( ) ( )( ) ( )nrm

effa a aFT FT f A S fsfν ν νγ γ τ γ τ γ γ ν ντ ⊗ = ≡≡ = ⊗ 

 

 
 

           (22) 

This is the generalized autocorrelation theorem for pulse containing many carrier frequencies. The effective 

autocorrelation function, , ( )a νγ τ , and the effective spectral density function, ( )eff S f , follow the same basic logics 
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as for the Eq.9 and 10. Note, however, that the measured broadening of ( )eff S f has happened due to the convolution 

between real physical frequency distribution ( )s ν from the source and the mathematical Fourier frequency . ( )nrm A f . 
     Eq.15 and 17 represent the key issue of this paper that the two-beam autocorrelation function for a multi-
frequency laser pulse is a product of two unknown pulse parameters, the pulse envelope-function and the frequency 
distributions (or the comb) function. Therefore, the detailed characterization would require iterative computational 
approach by guessing the most plausible functional forms for each parameter.  We should note that a direct spectral 
analysis of the pulse by a spectrometer does not directly give us ( )s ν . A spectrometer gives us

.
( ) ( )( )

eff

nrm
S f A sf ν= ⊗ , as in Eq.22 [8]. Further details will be presented in a future paper. 
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